IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v3y2009i3p263-279.html
   My bibliography  Save this article

New robust dynamic plots for regression mixture detection

Author

Listed:
  • Domenico Perrotta
  • Marco Riani
  • Francesca Torti

Abstract

No abstract is available for this item.

Suggested Citation

  • Domenico Perrotta & Marco Riani & Francesca Torti, 2009. "New robust dynamic plots for regression mixture detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 263-279, December.
  • Handle: RePEc:spr:advdac:v:3:y:2009:i:3:p:263-279
    DOI: 10.1007/s11634-009-0050-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-009-0050-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-009-0050-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony C. Atkinson, 2002. "Forward search added-variable t-tests and the effect of masked outliers on model selection," Biometrika, Biometrika Trust, vol. 89(4), pages 939-946, December.
    2. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Torti & Aldo Corbellini & Anthony C. Atkinson, 2021. "fsdaSAS: A Package for Robust Regression for Very Large Datasets Including the Batch Forward Search," Stats, MDPI, vol. 4(2), pages 1-21, April.
    2. Torti, Francesca & Corbellini, Aldo & Atkinson, Anthony C., 2021. "fsdaSAS: a package for robust regression for very large datasets including the batch forward search," LSE Research Online Documents on Economics 109895, London School of Economics and Political Science, LSE Library.
    3. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    4. Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2023. "Automatic robust Box–Cox and extended Yeo–Johnson transformations in regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 75-102, March.
    5. Matthias Templ & Andreas Alfons & Peter Filzmoser, 2012. "Exploring incomplete data using visualization techniques," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 29-47, April.
    6. Atkinson, Anthony C. & Riani, Marco & Corbellini, Aldo, 2021. "The box-cox transformation: review and extensions," LSE Research Online Documents on Economics 103537, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony C. Atkinson & Marco Riani & Aldo Corbellini, 2020. "The analysis of transformations for profit‐and‐loss data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(2), pages 251-275, April.
    2. Menjoge, Rajiv S. & Welsch, Roy E., 2010. "A diagnostic method for simultaneous feature selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3181-3193, December.
    3. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    4. Riani, Marco & Atkinson, Anthony C., 2010. "Robust model selection with flexible trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3300-3312, December.
    5. Anthony C. Atkinson & Marco Riani & Andrea Cerioli, 2018. "Cluster detection and clustering with random start forward searches," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 777-798, April.
    6. Søren Johansen & Bent Nielsen, 2014. "Optimal hedging with the cointegrated vector autoregressive model," Discussion Papers 14-23, University of Copenhagen. Department of Economics.
    7. Anthony C. Atkinson & Aldo Corbellini & Marco Riani, 2017. "Robust Bayesian regression with the forward search: theory and data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 869-886, December.
    8. Torti, Francesca & Corbellini, Aldo & Atkinson, Anthony C., 2021. "fsdaSAS: a package for robust regression for very large datasets including the batch forward search," LSE Research Online Documents on Economics 109895, London School of Economics and Political Science, LSE Library.
    9. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    10. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    11. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    12. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    13. Zuppiroli, Marco & Donati, Michele & Riani, Marco & Verga, Giovanni, 2015. "The Impact of Trading Activity in Agricultural Futures Markets," 2015 Fourth Congress, June 11-12, 2015, Ancona, Italy 207848, Italian Association of Agricultural and Applied Economics (AIEAA).
    14. Kirschstein, Thomas & Liebscher, Steffen & Becker, Claudia, 2013. "Robust estimation of location and scatter by pruning the minimum spanning tree," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 173-184.
    15. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    16. Søren Johansen & Bent Nielsen, 2013. "Asymptotic analysis of the Forward Search," Discussion Papers 13-01, University of Copenhagen. Department of Economics.
    17. Sung-Soo Kim & Sung Park & W. J. Krzanowski, 2008. "Simultaneous variable selection and outlier identification in linear regression using the mean-shift outlier model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 283-291.
    18. Søren Johansen & Bent Nielsen, 2014. "Outlier detection algorithms for least squares time series regression," Economics Papers 2014-W04, Economics Group, Nuffield College, University of Oxford.
    19. Peter Filzmoser & Anne Ruiz-Gazen & Christine Thomas-Agnan, 2014. "Identification of local multivariate outliers," Statistical Papers, Springer, vol. 55(1), pages 29-47, February.
    20. De Bin, Riccardo & Boulesteix, Anne-Laure & Sauerbrei, Willi, 2017. "Detection of influential points as a byproduct of resampling-based variable selection procedures," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 19-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:3:y:2009:i:3:p:263-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.