IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p3183-3193.html
   My bibliography  Save this article

Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering

Author

Listed:
  • ter Braak, Cajo J.F.
  • Kourmpetis, Yiannis
  • Kiers, Henk A.L.
  • Bink, Marco C.A.M.

Abstract

Let be a given nn square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the nK fuzzy memberships matrix is found by least-squares approximation of the off-diagonal elements of by inner products of rows of . By contrast, kernelized fuzzy c-means is not least-squares and requires an additional fuzziness parameter. The aim is to popularize additive fuzzy clustering by interpreting it as a latent class model, whereby the elements of are modeled as the probability that two individuals share the same class on the basis of the assignment probability matrix . Two new algorithms are provided, a brute force genetic algorithm (differential evolution) and an iterative row-wise quadratic programming algorithm of which the latter is the more effective. Simulations showed that (1) the method usually has a unique solution, except in special cases, (2) both algorithms reached this solution from random restarts and (3) the number of clusters can be well estimated by AIC. Additive fuzzy clustering is computationally efficient and combines attractive features of both the vector model and the cluster model.

Suggested Citation

  • ter Braak, Cajo J.F. & Kourmpetis, Yiannis & Kiers, Henk A.L. & Bink, Marco C.A.M., 2009. "Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3183-3193, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3183-3193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00477-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nowicki K. & Snijders T. A. B., 2001. "Estimation and Prediction for Stochastic Blockstructures," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1077-1087, September.
    2. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    3. Mooijaart, Ab & van der Heijden, Peter G. M. & van der Ark, L. Andries, 1999. "A least squares algorithm for a mixture model for compositional data," Computational Statistics & Data Analysis, Elsevier, vol. 30(4), pages 359-379, June.
    4. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    5. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    6. Sato-Ilic, Mika & Sato, Yoshiharu, 2000. "Asymmetric aggregation operator and its application to fuzzy clustering model," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 379-394, January.
    7. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blasius, J. & Greenacre, M. & Groenen, P.J.F. & van de Velden, M., 2009. "Special issue on correspondence analysis and related methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3103-3106, June.
    2. Andrei Prodan & Henk Brand & Sultan Imangaliyev & Evgeni Tsivtsivadze & Fridus van der Weijden & Ad de Jong & Armand Paauw & Wim Crielaard & Bart Keijser & Enno Veerman, 2016. "A Study of the Variation in the Salivary Peptide Profiles of Young Healthy Adults Acquired Using MALDI-TOF MS," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    2. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    3. Xiao-Li Meng, 2016. "Discussion: Should a Working Model Actually Work?," International Statistical Review, International Statistical Institute, vol. 84(3), pages 362-367, December.
    4. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    6. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    7. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    8. Eric A. Vance & Elizabeth A. Archie & Cynthia J. Moss, 2009. "Social networks in African elephants," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 273-293, December.
    9. Marchette, David J. & Priebe, Carey E., 2008. "Predicting unobserved links in incompletely observed networks," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1373-1386, January.
    10. repec:spo:wpecon:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    11. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    12. Mark S. Handcock, 2017. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1537-1539, October.
    13. Irene Crimaldi & Michela Del Vicario & Greg Morrison & Walter Quattrociocchi & Massimo Riccaboni, 2015. "Homophily and Triadic Closure in Evolving Social Networks," Working Papers 3/2015, IMT School for Advanced Studies Lucca, revised May 2015.
    14. Montes-Rojas Gabriel, 2022. "Subgraph Network Random Effects Error Components Models: Specification and Testing," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 17-34, January.
    15. Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
    16. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    17. Yingda Lu & Kinshuk Jerath & Param Vir Singh, 2013. "The Emergence of Opinion Leaders in a Networked Online Community: A Dyadic Model with Time Dynamics and a Heuristic for Fast Estimation," Management Science, INFORMS, vol. 59(8), pages 1783-1799, August.
    18. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    19. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    20. Prasenjit Ghosh & Debdeep Pati & Anirban Bhattacharya, 2020. "Posterior Contraction Rates for Stochastic Block Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 448-476, August.
    21. Zhang, Lingsong & Lu, Shu & Marron, J.S., 2015. "Nested nonnegative cone analysis," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 100-110.
    22. Tyler H. McCormick & Tian Zheng, 2015. "Latent Surface Models for Networks Using Aggregated Relational Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1684-1695, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3183-3193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.