IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v31y2004i8p999-1017.html
   My bibliography  Save this article

Dependent SiZer: Goodness-of-Fit Tests for Time Series Models

Author

Listed:
  • Cheolwoo Park
  • J. S. Marron
  • Vitaliana Rondonotti

Abstract

In this paper, we extend SiZer (SIgnificant ZERo crossing of the derivatives) to dependent data for the purpose of goodness-of-fit tests for time series models. Dependent SiZer compares the observed data with a specific null model being tested by adjusting the statistical inference using an assumed autocovariance function. This new approach uses a SiZer type visualization to flag statistically significant differences between the data and a given null model. The power of this approach is demonstrated through some examples of time series of Internet traffic data. It is seen that such time series can have even more burstiness than is predicted by the popular, long- range dependent, Fractional Gaussian Noise model.

Suggested Citation

  • Cheolwoo Park & J. S. Marron & Vitaliana Rondonotti, 2004. "Dependent SiZer: Goodness-of-Fit Tests for Time Series Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(8), pages 999-1017.
  • Handle: RePEc:taf:japsta:v:31:y:2004:i:8:p:999-1017
    DOI: 10.1080/0266476042000270554
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476042000270554
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0266476042000270554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Cheolwoo & Kang, Kee-Hoon, 2008. "SiZer analysis for the comparison of regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3954-3970, April.
    2. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    3. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    4. Park, Cheolwoo & Godtliebsen, Fred & Taqqu, Murad & Stoev, Stilian & Marron, J.S., 2007. "Visualization and inference based on wavelet coefficients, SiZer and SiNos," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5994-6012, August.
    5. Olsen, Lena Ringstad & Chaudhuri, Probal & Godtliebsen, Fred, 2008. "Multiscale spectral analysis for detecting short and long range change points in time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3310-3330, March.
    6. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    7. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:31:y:2004:i:8:p:999-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.