IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v117y2013icp120-133.html
   My bibliography  Save this article

Mixtures of common factor analyzers for high-dimensional data with missing information

Author

Listed:
  • Wang, Wan-Lun

Abstract

Mixtures of common factor analyzers (MCFA), thought of as a parsimonious extension of mixture factor analyzers (MFA), have recently been developed as a novel approach to analyzing high-dimensional data, where the number of observations n is not very large relative to their dimension p. The key idea behind MCFA is to reduce further the number of parameters in the specification of the component-covariance matrices. An attractive and important feature of MCFA is to allow visualizing data in lower dimensions. The occurrence of missing data persists in many scientific investigations and often complicates data analysis. In this paper, we establish a computationally flexible EM-type algorithm for parameter estimation of the MCFA model with partially observed data. To facilitate the implementation, two auxiliary permutation matrices are incorporated into the estimating procedure for exactly extracting the location of observed and missing components of each observation. Practical issues related to the specification of initial values, model-based clustering and discriminant procedure are also discussed. Our methodology is illustrated through real and simulated examples.

Suggested Citation

  • Wang, Wan-Lun, 2013. "Mixtures of common factor analyzers for high-dimensional data with missing information," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 120-133.
  • Handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:120-133
    DOI: 10.1016/j.jmva.2013.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boldea, Otilia & Magnus, Jan R., 2009. "Maximum Likelihood Estimation of the Multivariate Normal Mixture Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1539-1549.
    2. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    3. McLachlan, G. J. & Peel, D. & Bean, R. W., 2003. "Modelling high-dimensional data by mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 379-388, January.
    4. Jara, Alejandro & Quintana, Fernando & San Marti­n, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
    5. McLachlan, G.J. & Bean, R.W. & Ben-Tovim Jones, L., 2007. "Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5327-5338, July.
    6. Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
    7. Di Zio, Marco & Guarnera, Ugo & Luzi, Orietta, 2007. "Imputation through finite Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5305-5316, July.
    8. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    9. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    10. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jianhua & Shi, Lei, 2014. "Automated learning of factor analysis with complete and incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 205-218.
    2. Wan-Lun Wang & Luis M. Castro & Yen-Ting Chang & Tsung-I Lin, 2019. "Mixtures of restricted skew-t factor analyzers with common factor loadings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 445-480, June.
    3. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    4. Wang, Wan-Lun, 2015. "Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 223-235.
    5. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire & McNicholas, Paul D. & Karlis, Dimitris, 2016. "Clustering with the multivariate normal inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 18-30.
    6. Wan-Lun Wang & Tsung-I Lin, 2017. "Flexible clustering via extended mixtures of common t-factor analyzers," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(3), pages 227-252, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    2. Wang, Wan-Lun, 2015. "Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 223-235.
    3. Wan-Lun Wang & Tsung-I Lin, 2020. "Automated learning of mixtures of factor analysis models with missing information," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1098-1124, December.
    4. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    5. Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
    6. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering via mixtures of t factor analyzers with incomplete data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 659-690, September.
    7. Wan-Lun Wang & Tsung-I Lin, 2015. "Robust model-based clustering via mixtures of skew-t distributions with missing information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 423-445, December.
    8. Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.
    9. Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
    10. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    11. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    12. Sharon X. Lee & Tsung-I Lin & Geoffrey J. McLachlan, 2021. "Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 481-512, June.
    13. Andrews, Jeffrey L. & McNicholas, Paul D. & Subedi, Sanjeena, 2011. "Model-based classification via mixtures of multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 520-529, January.
    14. Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
    15. Montanari, Angela & Calo, Daniela G. & Viroli, Cinzia, 2008. "Independent factor discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3246-3254, February.
    16. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    17. Hashemi, Farzane & Naderi, Mehrdad & Jamalizadeh, Ahad & Bekker, Andriette, 2021. "A flexible factor analysis based on the class of mean-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    18. Galimberti, Giuliano & Montanari, Angela & Viroli, Cinzia, 2009. "Penalized factor mixture analysis for variable selection in clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4301-4310, October.
    19. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
    20. Wan-Lun Wang & Tsung-I Lin, 2017. "Flexible clustering via extended mixtures of common t-factor analyzers," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(3), pages 227-252, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:120-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.