IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v118y2023i542p1319-1332.html
   My bibliography  Save this article

Statistical Inference for High-Dimensional Generalized Linear Models With Binary Outcomes

Author

Listed:
  • T. Tony Cai
  • Zijian Guo
  • Rong Ma

Abstract

This article develops a unified statistical inference framework for high-dimensional binary generalized linear models (GLMs) with general link functions. Both unknown and known design distribution settings are considered. A two-step weighted bias-correction method is proposed for constructing confidence intervals (CIs) and simultaneous hypothesis tests for individual components of the regression vector. Minimax lower bound for the expected length is established and the proposed CIs are shown to be rate-optimal up to a logarithmic factor. The numerical performance of the proposed procedure is demonstrated through simulation studies and an analysis of a single cell RNA-seq dataset, which yields interesting biological insights that integrate well into the current literature on the cellular immune response mechanisms as characterized by single-cell transcriptomics. The theoretical analysis provides important insights on the adaptivity of optimal CIs with respect to the sparsity of the regression vector. New lower bound techniques are introduced and they can be of independent interest to solve other inference problems in high-dimensional binary GLMs.

Suggested Citation

  • T. Tony Cai & Zijian Guo & Rong Ma, 2023. "Statistical Inference for High-Dimensional Generalized Linear Models With Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1319-1332, April.
  • Handle: RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1319-1332
    DOI: 10.1080/01621459.2021.1990769
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1990769
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1990769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiang & Li, Yu-Ning & Zhang, Li-Xin & Zhao, Jun, 2024. "Inference for high-dimensional linear expectile regression with de-biasing method," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    2. Xingyu Chen & Lin Liu & Rajarshi Mukherjee, 2024. "Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics," Papers 2408.06103, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1319-1332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.