IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v118y2023i544p2433-2445.html
   My bibliography  Save this article

Bias-Adjusted Spectral Clustering in Multi-Layer Stochastic Block Models

Author

Listed:
  • Jing Lei
  • Kevin Z. Lin

Abstract

We consider the problem of estimating common community structures in multi-layer stochastic block models, where each single layer may not have sufficient signal strength to recover the full community structure. In order to efficiently aggregate signal across different layers, we argue that the sum-of-squared adjacency matrices contain sufficient signal even when individual layers are very sparse. Our method uses a bias-removal step that is necessary when the squared noise matrices may overwhelm the signal in the very sparse regime. The analysis of our method relies on several novel tail probability bounds for matrix linear combinations with matrix-valued coefficients and matrix-valued quadratic forms, which may be of independent interest. The performance of our method and the necessity of bias removal is demonstrated in synthetic data and in microarray analysis about gene co-expression networks. Supplementary materials for this article are available online.

Suggested Citation

  • Jing Lei & Kevin Z. Lin, 2023. "Bias-Adjusted Spectral Clustering in Multi-Layer Stochastic Block Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2433-2445, October.
  • Handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2433-2445
    DOI: 10.1080/01621459.2022.2054817
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2022.2054817
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2022.2054817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mengxue & von Sachs, Rainer & Pircalabelu, Eugen, 2024. "Time-varying degree-corrected stochastic block models," LIDAM Discussion Papers ISBA 2024014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2433-2445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.