IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v150y2020ics0167947320300694.html
   My bibliography  Save this article

Partially functional linear regression in reproducing kernel Hilbert spaces

Author

Listed:
  • Cui, Xia
  • Lin, Hongmei
  • Lian, Heng

Abstract

In this paper, we study the partially functional linear regression model in which there are both functional predictors and traditional multivariate predictors. The existing approach is based on approximation using functional principal component analysis which has some limitations. We propose an alternative framework based on reproducing kernel Hilbert spaces (RKHS) which has not been investigated in the literature for the partially functional case. Asymptotic normality of the non-functional part is also shown. Even when reduced to the purely functional linear regression, our results extend the existing results in two aspects: rates are established using both prediction risk and RKHS norm, and faster rates are possible if greater smoothness is assumed. Some simulations are used to demonstrate the performance of the proposed estimator.

Suggested Citation

  • Cui, Xia & Lin, Hongmei & Lian, Heng, 2020. "Partially functional linear regression in reproducing kernel Hilbert spaces," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300694
    DOI: 10.1016/j.csda.2020.106978
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300694
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    2. Aurore Delaigle & Peter Hall, 2012. "Achieving near perfect classification for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 267-286, March.
    3. Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
    4. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    5. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    6. Ma, Ping & Zhong, Wenxuan, 2008. "Penalized Clustering of Large-Scale Functional Data With Multiple Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 625-636, June.
    7. Xiaoxiao Sun & Pang Du & Xiao Wang & Ping Ma, 2018. "Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1601-1611, October.
    8. Dehan Kong & Kaijie Xue & Fang Yao & Hao H. Zhang, 2016. "Partially functional linear regression in high dimensions," Biometrika, Biometrika Trust, vol. 103(1), pages 147-159.
    9. Lian, Heng, 2015. "Minimax prediction for functional linear regression with functional responses in reproducing kernel Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 395-402.
    10. J. Ramsay, 1982. "When the data are functions," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 379-396, December.
    11. Cristian Preda & Gilbert Saporta & Caroline Lévéder, 2007. "PLS classification of functional data," Computational Statistics, Springer, vol. 22(2), pages 223-235, July.
    12. Raymond K. W. Wong & Yehua Li & Zhengyuan Zhu, 2019. "Partially Linear Functional Additive Models for Multivariate Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 406-418, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Binhong & Li, Peixing, 2023. "Covariance estimation error of incomplete functional data under RKHS framework," Applied Mathematics and Computation, Elsevier, vol. 443(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    2. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    3. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    4. Tang, Qingguo & Tu, Wei & Kong, Linglong, 2023. "Estimation for partial functional partially linear additive model," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    5. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    6. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    7. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    8. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    9. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    10. Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
    11. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    12. Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    13. Yang, Seong J. & Shin, Hyejin & Lee, Sang Han & Lee, Seokho, 2020. "Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    14. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    15. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    16. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    17. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    18. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    19. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    20. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.