IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v174y2022ics0167947322000147.html
   My bibliography  Save this article

Estimation of the volume under a ROC surface in presence of covariates

Author

Listed:
  • To, Duc-Khanh
  • Adimari, Gianfranco
  • Chiogna, Monica

Abstract

A new method to adjust for covariate effects in the estimation of volume under a ROC surface (VUS) is presented. The method is based on the induced-regression methodology, which uses location-scale regression models to explain the relation between the test results and the covariate(s). For the estimation of the models, it is proposed to use a semiparametric generalized estimating equations (GEE) approach if the parametric forms of the mean and variance functions are specified. Alternatively, a nonparametric method is proposed, based on local linear regression (LL). In order to estimate the covariate-specific VUS, a covariate-specific Mann-Whitney representation of VUS is used, and working samples constructed after fitting the location-scale models by the GEE or LL approach. This leads to new MW-GEE and MW-LL covariate-specific VUS estimators. The asymptotic behavior of the new estimators is investigated. More precisely, their mean squared consistency is proved. Moreover, the performance of the estimators in finite samples is explored through several simulation experiments, and an illustration, based on data from the Alzheimer's Disease Neuroimaging Initiative, is provided.

Suggested Citation

  • To, Duc-Khanh & Adimari, Gianfranco & Chiogna, Monica, 2022. "Estimation of the volume under a ROC surface in presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322000147
    DOI: 10.1016/j.csda.2022.107434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000147
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danping Liu & Xiao-Hua Zhou, 2011. "Semiparametric Estimation of the Covariate-Specific ROC Curve in Presence of Ignorable Verification Bias," Biometrics, The International Biometric Society, vol. 67(3), pages 906-916, September.
    2. Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
    3. Wenceslao González‐Manteiga & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2011. "ROC Curves in Non‐Parametric Location‐Scale Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 169-184, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim M. Almanjahie & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Estimating the Conditional Density in Scalar-On-Function Regression Structure: k -N-N Local Linear Approach," Mathematics, MDPI, vol. 10(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pardo-Fernandez, Juan Carlos & Rodriguez-alvarez, Maria Xose & Van Keilegom, Ingrid, 2013. "A review on ROC curves in the presence of covariates," LIDAM Discussion Papers ISBA 2013050, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Fanjul-Hevia, Arís & González-Manteiga, Wenceslao & Pardo-Fernández, Juan Carlos, 2021. "A non-parametric test for comparing conditional ROC curves," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Danping Liu & Xiao-Hua Zhou, 2013. "Covariate Adjustment in Estimating the Area Under ROC Curve with Partially Missing Gold Standard," Biometrics, The International Biometric Society, vol. 69(1), pages 91-100, March.
    4. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    5. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    6. Rodríguez-Álvarez, María Xosé & Roca-Pardiñas, Javier & Cadarso-Suárez, Carmen, 2011. "A new flexible direct ROC regression model: Application to the detection of cardiovascular risk factors by anthropometric measures," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3257-3270, December.
    7. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    8. Chinyereugo M Umemneku Chikere & Kevin Wilson & Sara Graziadio & Luke Vale & A Joy Allen, 2019. "Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard – An update," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-25, October.
    9. Edler, Lutz & Lee, Jae Won & Mittlböck, Martina & Niland, Joyce & Victor, Norbert, 2009. "Computational statistics within clinical research," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 583-585, January.
    10. Rodríguez-Álvarez, María Xosé & Tahoces, Pablo G. & Cadarso-Suárez, Carmen & Lado, María José, 2011. "Comparative study of ROC regression techniques--Applications for the computer-aided diagnostic system in breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 888-902, January.
    11. Vanda Inácio de Carvalho & Miguel de Carvalho & Adam J. Branscum, 2017. "Nonparametric Bayesian covariate‐adjusted estimation of the Youden index," Biometrics, The International Biometric Society, vol. 73(4), pages 1279-1288, December.
    12. Pablo Mart�nez-Camblor & Carlos Carleos & Norberto Corral, 2011. "Powerful nonparametric statistics to compare k independent ROC curves," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1317-1332, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322000147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.