IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v153y2021ics0167947320301559.html
   My bibliography  Save this article

Fixed design local polynomial smoothing and bandwidth selection for right censored data

Author

Listed:
  • Bagkavos, Dimitrios
  • Ioannides, Dimitrios

Abstract

The local polynomial smoothing of the Kaplan–Meier estimate for fixed designs is explored and analyzed. The first benefit, in comparison to classical convolution kernel smoothing, is the development of boundary aware estimates of the distribution function, its derivatives and integrated derivative products of any arbitrary order. The advancements proceed by developing asymptotic mean integrated square error optimal solve-the-equation plug-in bandwidth selectors for the estimates of the distribution function and its derivatives, and as a byproduct, a mean square error optimal bandwidth rule for integrated derivative products. The asymptotic properties of all methodological contributions are quantified analytically and discussed in detail. Three real data analyses illustrate the benefits of the proposed methodology in practice. Finally, numerical evidence is provided on the finite sample performance of the proposed technique with reference to benchmark estimates.

Suggested Citation

  • Bagkavos, Dimitrios & Ioannides, Dimitrios, 2021. "Fixed design local polynomial smoothing and bandwidth selection for right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301559
    DOI: 10.1016/j.csda.2020.107064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301559
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hairui Hua & Prakash N. Patil & Dimitrios Bagkavos, 2017. "Semiparametric smoothing approach to hazard rate estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 669-693, July.
    2. Ming‐Yen Cheng, 1997. "Boundary Aware Estimators of Integrated Density Derivative Products," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 191-203.
    3. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    4. Kus, Coskun, 2007. "A new lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4497-4509, May.
    5. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    2. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    3. Su, Liangjun, 2006. "A simple test for multivariate conditional symmetry," Economics Letters, Elsevier, vol. 93(3), pages 374-378, December.
    4. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    6. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    7. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    8. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    9. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    10. repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
    11. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    12. Liu, Bo & Mojirsheibani, Majid, 2015. "On a weighted bootstrap approximation of the Lp norms of kernel density estimators," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 65-73.
    13. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    14. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    15. Al-Mutairi, D.K. & Ghitany, M.E. & Gupta, Ramesh C., 2011. "Estimation of reliability in a series system with random sample size," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 964-972, February.
    16. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    17. Cristina Sommacampagna, 2002. "Stima del Value-at-Risk con il Filtro di Kalman," Rivista di Politica Economica, SIPI Spa, vol. 92(6), pages 147-174, November-.
    18. repec:cte:werepe:we1211 is not listed on IDEAS
    19. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    20. White, Halbert & Hong, Yongmiao, 1999. "M-Testing Using Finite and Infinite Dimensional Parameter Estimators," University of California at San Diego, Economics Working Paper Series qt9qz123ng, Department of Economics, UC San Diego.
    21. Søren Asmussen & Jaakko Lehtomaa, 2017. "Distinguishing Log-Concavity from Heavy Tails," Risks, MDPI, vol. 5(1), pages 1-14, February.
    22. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.