IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v136y2019icp1-11.html
   My bibliography  Save this article

Wild bootstrap logrank tests with broader power functions for testing superiority

Author

Listed:
  • Ditzhaus, Marc
  • Pauly, Markus

Abstract

A novel wild bootstrap procedure is introduced for testing superiority in unpaired two-sample survival data. Combining classical weighted logrank tests yields a procedure with broader power behavior. Right censoring within the data is allowed and may differ between the groups. The tests are shown to be asymptotically exact under the null, consistent for fixed alternatives and admissible for a larger set of local alternatives. Beside these asymptotic properties, the procedures’ strengths are also illustrated in simulations for finite sample sizes. The tests are implemented in the novel R-package mdir.logrank and its application is demonstrated in an empirical example.

Suggested Citation

  • Ditzhaus, Marc & Pauly, Markus, 2019. "Wild bootstrap logrank tests with broader power functions for testing superiority," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 1-11.
  • Handle: RePEc:eee:csdana:v:136:y:2019:i:c:p:1-11
    DOI: 10.1016/j.csda.2019.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319300362
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tobias Bluhmki & Claudia Schmoor & Dennis Dobler & Markus Pauly & Juergen Finke & Martin Schumacher & Jan Beyersmann, 2018. "A wild bootstrap approach for the Aalen–Johansen estimator," Biometrics, The International Biometric Society, vol. 74(3), pages 977-985, September.
    2. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    3. Song Yang & Ross Prentice, 2010. "Improved Logrank-Type Tests for Survival Data Using Adaptive Weights," Biometrics, The International Biometric Society, vol. 66(1), pages 30-38, March.
    4. Markus Pauly & Edgar Brunner & Frank Konietschke, 2015. "Asymptotic permutation tests in general factorial designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 461-473, March.
    5. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    6. D. Dobler & J. Beyersmann & M. Pauly, 2017. "Non-strange weird resampling for complex survival data," Biometrika, Biometrika Trust, vol. 104(3), pages 699-711.
    7. R.D. Gill, 1980. "Censoring and Stochastic Integrals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 34(2), pages 124-124, June.
    8. Arnold Janssen & Claus‐Dieter Mayer, 2001. "Conditional Studentized Survival Tests for Randomly Censored Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 283-293, June.
    9. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    10. Michael Brendel & Arnold Janssen & Claus-Dieter Mayer & Markus Pauly, 2014. "Weighted Logrank Permutation Tests for Randomly Right Censored Life Science Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 742-761, September.
    11. Borm, P.E.M. & Keiding, H. & McLean, R.P. & Oortwijn, S. & Tijs, S.H., 1993. "The compromise value for NTU-games," Other publications TiSEM 27c574e5-d810-484c-a668-3, Tilburg University, School of Economics and Management.
    12. Jan Beyersmann & Susanna Di Termini & Markus Pauly, 2013. "Weak Convergence of the Wild Bootstrap for the Aalen–Johansen Estimator of the Cumulative Incidence Function of a Competing Risk," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 387-402, September.
    13. Janssen, Arnold, 1997. "Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 9-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Ditzhaus & Jon Genuneit & Arnold Janssen & Markus Pauly, 2023. "CASANOVA: Permutation inference in factorial survival designs," Biometrics, The International Biometric Society, vol. 79(1), pages 203-215, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Ditzhaus & Arnold Janssen, 2020. "Bootstrap and permutation rank tests for proportional hazards under right censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 493-517, July.
    2. Marc Ditzhaus & Jon Genuneit & Arnold Janssen & Markus Pauly, 2023. "CASANOVA: Permutation inference in factorial survival designs," Biometrics, The International Biometric Society, vol. 79(1), pages 203-215, March.
    3. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    4. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    5. Tobias Bluhmki & Claudia Schmoor & Dennis Dobler & Markus Pauly & Juergen Finke & Martin Schumacher & Jan Beyersmann, 2018. "A wild bootstrap approach for the Aalen–Johansen estimator," Biometrics, The International Biometric Society, vol. 74(3), pages 977-985, September.
    6. Grzegorz Wyłupek, 2021. "A permutation test for the two-sample right-censored model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 1037-1061, October.
    7. Tobias Bluhmki & Dennis Dobler & Jan Beyersmann & Markus Pauly, 2019. "The wild bootstrap for multivariate Nelson–Aalen estimators," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 97-127, January.
    8. Tamara Fernández & Nicolás Rivera, 2021. "A reproducing kernel Hilbert space log‐rank test for the two‐sample problem," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1384-1432, December.
    9. Ditzhaus, Marc & Smaga, Łukasz, 2022. "Permutation test for the multivariate coefficient of variation in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    10. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    11. D. Dobler & J. Beyersmann & M. Pauly, 2017. "Non-strange weird resampling for complex survival data," Biometrika, Biometrika Trust, vol. 104(3), pages 699-711.
    12. Smaga, Łukasz, 2015. "Wald-type statistics using {2}-inverses for hypothesis testing in general factorial designs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 215-220.
    13. Russell Davidson & James G. MacKinnon, 2015. "Bootstrap Tests for Overidentification in Linear Regression Models," Econometrics, MDPI, vol. 3(4), pages 1-39, December.
    14. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    15. El-Shagi, Makram & Schweinitz, Gregor von, 2018. "The joint dynamics of sovereign ratings and government bond yields," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 198-218.
    16. MacKinnon, James G., 2023. "Fast cluster bootstrap methods for linear regression models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 52-71.
    17. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    18. Kathrin Möllenhoff & Achim Tresch, 2023. "Investigating non-inferiority or equivalence in time-to-event data under non-proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 483-507, July.
    19. Russell Davidson & James G. MacKinnon, 2014. "Confidence sets based on inverting Anderson–Rubin tests," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 39-58, June.
    20. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:136:y:2019:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.