IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p471-d1581179.html
   My bibliography  Save this article

Estimation for Partial Functional Multiplicative Regression Model

Author

Listed:
  • Xiaojing Liu

    (School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 031031, China)

  • Ping Yu

    (School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 031031, China)

  • Jianhong Shi

    (School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 031031, China)

Abstract

Functional data such as curves, shapes, and manifolds have become more and more common with modern technological advancements. The multiplicative regression model is well suited for analyzing data with positive responses. In this study, we study the estimation problems of the partial functional multiplicative regression model (PFMRM) based on the least absolute relative error (LARE) criterion and least product relative error (LPRE) criterion. The functional predictor and slope function are approximated by the functional principal component basis functions. Under certain regularity conditions, we derive the convergence rate of the slope function and establish the asymptotic normality of the slope vector for two estimation methods. Monte Carlo simulations are carried out to evaluate the proposed methods, and an application to Tecator data is investigated for illustration.

Suggested Citation

  • Xiaojing Liu & Ping Yu & Jianhong Shi, 2025. "Estimation for Partial Functional Multiplicative Regression Model," Mathematics, MDPI, vol. 13(3), pages 1-22, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:471-:d:1581179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
    2. Chen, Kani & Lin, Yuanyuan & Wang, Zhanfeng & Ying, Zhiliang, 2016. "Least product relative error estimation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 91-98.
    3. Tao Zhang & Qingzhao Zhang & Naixiong Li, 2016. "Least absolute relative error estimation for functional quadratic multiplicative model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(19), pages 5802-5817, October.
    4. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huilan Liu & Xiawei Zhang & Huaiqing Hu & Junjie Ma, 2024. "Analysis of the positive response data with the varying coefficient partially nonlinear multiplicative model," Statistical Papers, Springer, vol. 65(5), pages 3063-3092, July.
    2. Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
    3. Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
    4. Jun Zhang & Bingqing Lin & Yiping Yang, 2022. "Maximum nonparametric kernel likelihood estimation for multiplicative linear regression models," Statistical Papers, Springer, vol. 63(3), pages 885-918, June.
    5. Jun Zhang, 2021. "Model checking for multiplicative linear regression models with mixed estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 364-403, August.
    6. Zhanfeng Wang & Zhuojian Chen & Zimu Chen, 2018. "H-relative error estimation for multiplicative regression model with random effect," Computational Statistics, Springer, vol. 33(2), pages 623-638, June.
    7. Dong, Ruipeng & Li, Daoji & Zheng, Zemin, 2021. "Parallel integrative learning for large-scale multi-response regression with incomplete outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    8. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
    9. Junmin Liu & Deli Zhu & Luoyao Yu & Xuehu Zhu, 2023. "Specification testing of partially linear single-index models: a groupwise dimension reduction-based adaptive-to-model approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 232-262, March.
    10. Jun Zhang & Xia Cui & Heng Peng, 2020. "Estimation and hypothesis test for partial linear single-index multiplicative models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 699-740, June.
    11. Ayub, Kanwal & Song, Weixing & Shi, Jianhong, 2022. "Extrapolation estimation in parametric regression models with measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    12. Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
    13. Jun Zhang & Junpeng Zhu & Zhenghui Feng, 2019. "Estimation and hypothesis test for single-index multiplicative models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 242-268, March.
    14. Jun Zhang & Junpeng Zhu & Yan Zhou & Xia Cui & Tao Lu, 2020. "Multiplicative regression models with distortion measurement errors," Statistical Papers, Springer, vol. 61(5), pages 2031-2057, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:471-:d:1581179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.