IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1608-d1398433.html
   My bibliography  Save this article

The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains: A Perspective

Author

Listed:
  • Alexander Y. Mitrophanov

    (Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA)

Abstract

Perturbation bounds are powerful tools for investigating the phenomenon of insensitivity to perturbations, also referred to as stability, for stochastic and deterministic systems. This perspective article presents a focused account of some of the main concepts and results in inequality-based perturbation theory for finite state-space, time-homogeneous, continuous-time Markov chains. The diversity of perturbation bounds and the logical relationships between them highlight the essential stability properties and factors for this class of stochastic processes. We discuss the linear time dependence of general perturbation bounds for Markov chains, as well as time-independent (i.e., time-uniform) perturbation bounds for chains whose stationary distribution is unique. Moreover, we prove some new results characterizing the absolute and relative tightness of time-uniform perturbation bounds. Specifically, we show that, in some of them, an equality is achieved. Furthermore, we analytically compare two types of time-uniform bounds known from the literature. Possibilities for generalizing Markov-chain stability results, as well as connections with stability analysis for other systems and processes, are also discussed.

Suggested Citation

  • Alexander Y. Mitrophanov, 2024. "The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains: A Perspective," Mathematics, MDPI, vol. 12(11), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1608-:d:1398433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guglielmo D’Amico & Riccardo De Blasis & Fulvio Gismondi, 2023. "Perturbation analysis for dynamic poverty indexes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(19), pages 6820-6839, October.
    2. Zeifman, A. I. & Isaacson, Dean L., 1994. "On strong ergodicity for nonhomogeneous continuous-time Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 50(2), pages 263-273, April.
    3. Bouranis, Lampros & Friel, Nial & Maire, Florian, 2018. "Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 221-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeifman, A.I. & Korolev, V.Yu., 2014. "On perturbation bounds for continuous-time Markov chains," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 66-72.
    2. Yacov Satin & Alexander Zeifman & Alexander Sipin & Sherif I. Ammar & Janos Sztrik, 2020. "On Probability Characteristics for a Class of Queueing Models with Impatient Customers," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
    3. P. -C. G. Vassiliou, 2022. "Limiting Distributions of a Non-Homogeneous Markov System in a Stochastic Environment in Continuous Time," Mathematics, MDPI, vol. 10(8), pages 1-16, April.
    4. Alexander Zeifman & Victor Korolev & Yacov Satin, 2020. "Two Approaches to the Construction of Perturbation Bounds for Continuous-Time Markov Chains," Mathematics, MDPI, vol. 8(2), pages 1-25, February.
    5. Giorno, Virginia & Nobile, Amelia G., 2020. "On a class of birth-death processes with time-varying intensity functions," Applied Mathematics and Computation, Elsevier, vol. 379(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1608-:d:1398433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.