IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v061i02.html
   My bibliography  Save this article

Bergm: Bayesian Exponential Random Graphs in R

Author

Listed:
  • Caimo, Alberto
  • Friel, Nial

Abstract

In this paper we describe the main features of the Bergm package for the open-source R software which provides a comprehensive framework for Bayesian analysis of exponential random graph models: tools for parameter estimation, model selection and goodness-of- fit diagnostics. We illustrate the capabilities of this package describing the algorithms through a tutorial analysis of three network datasets.

Suggested Citation

  • Caimo, Alberto & Friel, Nial, 2014. "Bergm: Bayesian Exponential Random Graphs in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i02).
  • Handle: RePEc:jss:jstsof:v:061:i02
    DOI: http://hdl.handle.net/10.18637/jss.v061.i02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v061i02/v61i02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v061i02/Bergm_3.0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v061i02/v61i02.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v061i02/v61i02-data.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v061.i02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Morris, Martina & Handcock, Mark S. & Hunter, David R., 2008. "Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i04).
    2. Butts, Carter T., 2008. "network: A Package for Managing Relational Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i02).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouranis, Lampros & Friel, Nial & Maire, Florian, 2018. "Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 221-241.
    2. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    3. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2013. "ergm.userterms: A Template Package for Extending statnet," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i02).
    2. Bender-deMol, Skye & Morris, Martina & Moody, James, 2008. "Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i07).
    3. Youyi Bi & Yunjian Qiu & Zhenghui Sha & Mingxian Wang & Yan Fu & Noshir Contractor & Wei Chen, 2021. "Modeling Multi-Year Customers’ Considerations and Choices in China’s Auto Market Using Two-Stage Bipartite Network Analysis," Networks and Spatial Economics, Springer, vol. 21(2), pages 365-385, June.
    4. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    5. Duxbury, Scott W, 2019. "Mediation and Moderation in Statistical Network Models," SocArXiv 9bs4u, Center for Open Science.
    6. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    7. Groenen, Patrick J. F. & van de Velden, Michel, 2016. "Multidimensional Scaling by Majorization: A Review," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i08).
    8. Langong Hou & Ye Liu & Xiaoqin He, 2023. "Research on the Mechanism of Regional Innovation Network in Western China Based on ERGM: A Case Study of Chengdu-Chongqing Shuangcheng Economic Circle," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    9. Milad Abbasiharofteh & Tom Broekel, 2021. "Still in the shadow of the wall? The case of the Berlin biotechnology cluster," Environment and Planning A, , vol. 53(1), pages 73-94, February.
    10. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    11. Giroux, Stacey & Kaminski, Patrick & Waldman, Kurt & Blekking, Jordan & Evans, Tom & Caylor, Kelly K., 2023. "Smallholder social networks: Advice seeking and adaptation in rural Kenya," Agricultural Systems, Elsevier, vol. 205(C).
    12. Antonio Mario Arrizza & Alberto Caimo, 2021. "Bayesian dynamic network actor models with application to South Korean COVID-19 patient movement data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1465-1483, December.
    13. Tom Broekel & Marcel Bednarz, 2018. "Disentangling link formation and dissolution in spatial networks: An Application of a Two-Mode STERGM to a Project-Based R&D Network in the German Biotechnology Industry," Networks and Spatial Economics, Springer, vol. 18(3), pages 677-704, September.
    14. Goodreau, Steven M. & Handcock, Mark S. & Hunter, David R. & Butts, Carter T. & Morris, Martina, 2008. "A statnet Tutorial," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i09).
    15. Chiang, Yen-Sheng, 2015. "Inequality measures perform differently in global and local assessments: An exploratory computational experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 1-11.
    16. repec:jss:jstsof:24:i09 is not listed on IDEAS
    17. Duncan A. Clark & Mark S. Handcock, 2022. "Comparing the real‐world performance of exponential‐family random graph models and latent order logistic models for social network analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 566-587, April.
    18. Claudio Pinto, 2017. "Perceived quality and formation of inter-regional networks of health care migration," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 7(3), pages 1-5.
    19. Peng, Tai-Quan, 2015. "Assortative mixing, preferential attachment, and triadic closure: A longitudinal study of tie-generative mechanisms in journal citation networks," Journal of Informetrics, Elsevier, vol. 9(2), pages 250-262.
    20. Shulgin, Sergey & Zinkina, Julia & Korotayev, Andrey, 2017. "“Neighbors in values”: A new dataset of cultural distances between countries based on individuals’ values, and its application to the study of global trade," Research in International Business and Finance, Elsevier, vol. 42(C), pages 966-985.
    21. Christine A. Bevc & Jessica H. Retrum & Danielle M. Varda, 2015. "Patterns in PARTNERing across Public Health Collaboratives," IJERPH, MDPI, vol. 12(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:061:i02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.