IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v26y2020i3p205-221n5.html
   My bibliography  Save this article

Estimating marginal likelihoods from the posterior draws through a geometric identity

Author

Listed:
  • Reichl Johannes

    (Energy Institute at the Johannes Kepler University Linz, Altenberger Straße 69, 4040Linz, Austria)

Abstract

This article develops a new estimator of the marginal likelihood that requires only a sample of the posterior distribution as the input from the analyst. This sample may come from any sampling scheme, such as Gibbs sampling or Metropolis–Hastings sampling. The presented approach can be implemented generically in almost any application of Bayesian modeling and significantly decreases the computational burdens associated with marginal likelihood estimation compared to existing techniques. The functionality of this method is demonstrated in the context of probit and logit regressions, on two mixtures of normals models, and also on a high-dimensional random intercept probit. Simulation results show that the simple approach presented here achieves excellent stability in low-dimensional models, and also clearly outperforms existing methods when the number of coefficients in the model increases.

Suggested Citation

  • Reichl Johannes, 2020. "Estimating marginal likelihoods from the posterior draws through a geometric identity," Monte Carlo Methods and Applications, De Gruyter, vol. 26(3), pages 205-221, September.
  • Handle: RePEc:bpj:mcmeap:v:26:y:2020:i:3:p:205-221:n:5
    DOI: 10.1515/mcma-2020-2068
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2020-2068
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2020-2068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    2. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
    3. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    4. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    5. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    6. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    2. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    3. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    4. Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
    5. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    6. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
    7. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    8. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    9. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    10. Christian Aßmann, 2015. "Rossi, Peter E.: Bayesian non- and semi-parametric methods and applications," Journal of Economics, Springer, vol. 115(2), pages 195-197, June.
    11. Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
    12. Junior A. Ojeda Cunya & Gabriel Rodríguez, 2022. "Time-Varying Effects of External Shocks on Macroeconomic Fluctuations in Peru: An Empirical Application using TVP-VAR- SV Models," Documentos de Trabajo / Working Papers 2022-507, Departamento de Economía - Pontificia Universidad Católica del Perú.
    13. Arnold Zellner & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2011. "Instrumental Variables, Errors in Variables, and Simultaneous Equations Models: Applicability and Limitations of Direct Monte Carlo," Tinbergen Institute Discussion Papers 11-137/4, Tinbergen Institute.
    14. Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012. "A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
    15. Christian Aßmann & Jens Boysen-Hogrefe & Markus Pape, 2024. "Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 577-609, September.
    16. Jiang, Yu, 2020. "Identification of business cycles and the Great Moderation in the post-war U.S. economy," Economics Letters, Elsevier, vol. 190(C).
    17. Aßmann, Christian & Boysen-Hogrefe, Jens, 2009. "A bayesian approach to model-based clustering for panel probit models," Economics Working Papers 2009-03, Christian-Albrechts-University of Kiel, Department of Economics.
    18. Rodriguez, Gabriel & Castillo B., Paul & Calero, Roberto & Salcedo Cisneros, Rodrigo & Ataurima Arellano, Miguel, 2024. "Evolution of the exchange rate pass-through into prices in Peru: An empirical application using TVP-VAR-SV models," Journal of International Money and Finance, Elsevier, vol. 142(C).
    19. Grazian, Clara & Robert, Christian P., 2018. "Jeffreys priors for mixture estimation: Properties and alternatives," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 149-163.
    20. Fiorentini, G. & Planas, C. & Rossi, A., 2012. "The marginal likelihood of dynamic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2650-2662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:26:y:2020:i:3:p:205-221:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.