IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v117y2018icp90-108.html
   My bibliography  Save this article

Improved distributed particle filters for tracking in a wireless sensor network

Author

Listed:
  • Kang, Kai
  • Maroulas, Vasileios
  • Schizas, Ioannis
  • Bao, Feng

Abstract

A novel distributed particle filter algorithm is presented, called drift homotopy likelihood bridging particle filter (DHLB-PF). The DHLB-PF is designed to surmount the degeneracy problem by employing a multilevel Markov chain Monte Carlo (MCMC) procedure after the resampling step of particle filtering. DHLB-PF considers a sequence of pertinent stationary distributions which facilitates the MCMC step as well as explores the state space with a higher degree of freedom. The proposed algorithm is tested in a multi-target tracking problem using a wireless sensor network where no fusion center is required for data processing. The observations are gathered only from the informative sensors, which are sensing useful observations of the nearby moving targets. The detection of those informative sensors, which are typically a small portion of the sensor network, is taking place by using a sparsity-aware matrix decomposition technique. Simulation results showcase that the DHLB-PF outperforms current popular tracking algorithms.

Suggested Citation

  • Kang, Kai & Maroulas, Vasileios & Schizas, Ioannis & Bao, Feng, 2018. "Improved distributed particle filters for tracking in a wireless sensor network," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 90-108.
  • Handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:90-108
    DOI: 10.1016/j.csda.2017.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317301676
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter R. Gilks & Carlo Berzuini, 2001. "Following a moving target—Monte Carlo inference for dynamic Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 127-146.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Caudle, Kyle A. & Wegman, Edward, 2009. "Nonparametric density estimation of streaming data using orthogonal series," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3980-3986, October.
    4. Shin, Vladimir & Shevlyakov, Georgy & Kim, Kiseon, 2007. "A new fusion formula and its application to continuous-time linear systems with multisensor environment," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 840-854, October.
    5. Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.
    6. Jeske, Daniel R. & Montes De Oca, Veronica & Bischoff, Wolfgang & Marvasti, Mazda, 2009. "Cusum techniques for timeslot sequences with applications to network surveillance," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4332-4344, October.
    7. Wu, Lan & Yang, Yuehan & Liu, Hanzhong, 2014. "Nonnegative-lasso and application in index tracking," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 116-126.
    8. Mbalawata, Isambi S. & Särkkä, Simo & Vihola, Matti & Haario, Heikki, 2015. "Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 101-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Peng & Yan Zhu & Wenxuan Zhong, 2023. "Lasso regression in sparse linear model with $$\varphi $$ φ -mixing errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 1-26, January.
    2. Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
    3. Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
    4. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2022. "Nonparametric estimation of the random coefficients model: An elastic net approach," Journal of Econometrics, Elsevier, vol. 229(2), pages 299-321.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    7. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    8. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    9. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    10. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    11. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    12. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    13. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    15. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    16. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    18. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Michał Kos & Małgorzata Bogdan, 2020. "On the Asymptotic Properties of SLOPE," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 499-532, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:90-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.