Improved distributed particle filters for tracking in a wireless sensor network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2017.07.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Walter R. Gilks & Carlo Berzuini, 2001. "Following a moving target—Monte Carlo inference for dynamic Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 127-146.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Caudle, Kyle A. & Wegman, Edward, 2009. "Nonparametric density estimation of streaming data using orthogonal series," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3980-3986, October.
- Shin, Vladimir & Shevlyakov, Georgy & Kim, Kiseon, 2007. "A new fusion formula and its application to continuous-time linear systems with multisensor environment," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 840-854, October.
- Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.
- Jeske, Daniel R. & Montes De Oca, Veronica & Bischoff, Wolfgang & Marvasti, Mazda, 2009. "Cusum techniques for timeslot sequences with applications to network surveillance," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4332-4344, October.
- Wu, Lan & Yang, Yuehan & Liu, Hanzhong, 2014. "Nonnegative-lasso and application in index tracking," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 116-126.
- Mbalawata, Isambi S. & Särkkä, Simo & Vihola, Matti & Haario, Heikki, 2015. "Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 101-115.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ling Peng & Yan Zhu & Wenxuan Zhong, 2023. "Lasso regression in sparse linear model with $$\varphi $$ φ -mixing errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 1-26, January.
- Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
- Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
- Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2022. "Nonparametric estimation of the random coefficients model: An elastic net approach," Journal of Econometrics, Elsevier, vol. 229(2), pages 299-321.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
- Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
- Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
- Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
- Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023.
"A penalized two-pass regression to predict stock returns with time-varying risk premia,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Post-Print hal-04325655, HAL.
- Gaetan Bakalli & St'ephane Guerrier & Olivier Scaillet, 2022. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Papers 2208.00972, arXiv.org.
- Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
- Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Michał Kos & Małgorzata Bogdan, 2020. "On the Asymptotic Properties of SLOPE," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 499-532, August.
More about this item
Keywords
Hidden Markov models; Particle filters; Multi-target tracking; Wireless sensor network; Sparsity; Homotopy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:90-108. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.