IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2009cf632.html
   My bibliography  Save this paper

Corrected Empirical Bayes Confidence Intervals in Nested Error Regression Models

Author

Listed:
  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

Abstract

In the small area estimation, the empirical best linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) in the linear mixed model is recognized useful because it gives a stable and reliable estimate for a mean of a small area. In practical situations where EBLUP is applied to real data, it is important to evaluate how much EBLUP is reliable. One method for the purpose is to construct a confidence interval based on EBLUP. In this paper, we obtain an asymptotically corrected empirical Bayes confidence interval in a nested error regression model with unbalanced sample sizes and unknown components of variance. The coverage probability is shown to satisfy the confidence level in the second order asymptotics. It is numerically revealed that the corrected confidence interval is superior to the conventional confidence interval based on the sample mean in terms of the coverage probability and the expected width of the interval. Finally, it is applied to the posted land price data in Tokyo and the neighboring prefecture.

Suggested Citation

  • Tatsuya Kubokawa, 2009. "Corrected Empirical Bayes Confidence Intervals in Nested Error Regression Models," CIRJE F-Series CIRJE-F-632, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2009cf632
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2009/2009cf632.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Basu, Ruma & Ghosh, J. K. & Mukerjee, Rahul, 2003. "Empirical Bayes prediction intervals in a normal regression model: higher order asymptotics," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 197-203, June.
    3. Gauri Sankar Datta & Malay Ghosh & David Daniel Smith & Parthasarathi Lahiri, 2002. "On an Asymptotic Theory of Conditional and Unconditional Coverage Probabilities of Empirical Bayes Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 139-152, March.
    4. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238, April.
    5. Tatsuya Kubokawa & Muni S. Srivastava, 2007. "Akaike Information Criterion for Selecting Variables in a Nested Error Regression Model," CIRJE F-Series CIRJE-F-525, CIRJE, Faculty of Economics, University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatsuya Kubokawa, 2010. "On Measuring Uncertainty of Small Area Estimators with Higher Order Accuracy," CIRJE F-Series CIRJE-F-754, CIRJE, Faculty of Economics, University of Tokyo.
    2. Tatsuya Kubokawa & Bui Nagashima, 2011. "Parametric Bootstrap Methods for Bias Correction in Linear Mixed Models," CIRJE F-Series CIRJE-F-801, CIRJE, Faculty of Economics, University of Tokyo.
    3. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    4. Tatsuya Kubokawa, 2009. "A Review of Linear Mixed Models and Small Area Estimation," CIRJE F-Series CIRJE-F-702, CIRJE, Faculty of Economics, University of Tokyo.
    5. Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Estimation and Prediction Intervals in Transformed Linear Mixed Models," CIRJE F-Series CIRJE-F-929, CIRJE, Faculty of Economics, University of Tokyo.
    6. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    7. Hirose, Masayo Yoshimori, 2017. "Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 67-78.
    8. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    9. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    10. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    11. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    12. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    13. Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
    14. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    15. Malay Ghosh & Tapabrata Maiti, 2008. "Empirical Bayes Confidence Intervals for Means of Natural Exponential Family‐Quadratic Variance Function Distributions with Application to Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 484-495, September.
    16. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    17. Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.
    18. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    19. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2016. "On conditional prediction errors in mixed models with application to small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 18-33.
    20. Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "On Conditional Mean Squared Errors of Empirical Bayes Estimators in Mixed Models with Application to Small Area Estimation," CIRJE F-Series CIRJE-F-934, CIRJE, Faculty of Economics, University of Tokyo.
    21. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2009cf632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.