IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v106y2017icp153-164.html
   My bibliography  Save this article

Estimating functional linear mixed-effects regression models

Author

Listed:
  • Liu, Baisen
  • Wang, Liangliang
  • Cao, Jiguo

Abstract

A new functional linear mixed model is proposed to investigate the impact of functional predictors on a scalar response when repeated measurements are available on multiple subjects. The advantage of the proposed model is that under the proposed model, each subject has both individual scalar covariate effects and individual functional effects over time, while it shares the common population scalar covariate effects and the common population slope functions. A smoothing spline method is proposed to estimate the population fixed and random slope functions, and a REML-based EM algorithm is developed to estimate fixed effects and variance parameters for random effects. Simulation studies illustrate that for finite samples the proposed estimation method can provide accurate estimates for the functional linear mixed-effects model. The proposed model is applied to investigate the effect of daily ozone concentration on annual nonaccidental mortality rates and also to study the effect of daily temperature on annual precipitation.

Suggested Citation

  • Liu, Baisen & Wang, Liangliang & Cao, Jiguo, 2017. "Estimating functional linear mixed-effects regression models," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 153-164.
  • Handle: RePEc:eee:csdana:v:106:y:2017:i:c:p:153-164
    DOI: 10.1016/j.csda.2016.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302250
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Goldsmith & Ciprian M. Crainiceanu & Brian Caffo & Daniel Reich, 2012. "Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 453-469, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dazhou Lei & Hao Hu & Dongyang Geng & Jianshen Zhang & Yongzhi Qi & Sheng Liu & Zuo‐Jun Max Shen, 2023. "New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 655-673, February.
    2. Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
    3. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    4. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    5. Shujie Ma, 2016. "Estimation and inference in functional single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 181-208, February.
    6. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    7. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    8. Chen Yue & Vadim Zipunnikov & Pierre-Louis Bazin & Dzung Pham & Daniel Reich & Ciprian Crainiceanu & Brian Caffo, 2016. "Parameterization of White Matter Manifold-Like Structures Using Principal Surfaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1050-1060, July.
    9. Gina-Maria Pomann & Ana-Maria Staicu & Sujit Ghosh, 2016. "A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 395-414, April.
    10. Dai, Ning & Jones, Galin L. & Fiecas, Mark, 2020. "Bayesian longitudinal spectral estimation with application to resting-state fMRI data analysis," Econometrics and Statistics, Elsevier, vol. 15(C), pages 104-116.
    11. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    12. Cao, Guanqun & Wang, Li, 2018. "Simultaneous inference for the mean of repeated functional data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 279-295.
    13. Mostafa Zahed & Trent Lalonde & Maryam Skafyan, 2023. "Application of an Intensive Longitudinal Functional Model with Multiple Time Scales in Objectively Measured Children’s Physical Activity," Mathematics, MDPI, vol. 11(8), pages 1-22, April.
    14. Ting Li & Huichen Zhu & Tengfei Li & Hongtu Zhu, 2023. "Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space," Biometrics, The International Biometric Society, vol. 79(3), pages 1880-1895, September.
    15. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
    16. Zhu, Hongxiao & Morris, Jeffrey S. & Wei, Fengrong & Cox, Dennis D., 2017. "Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 88-101.
    17. Benjamin A. Goldstein & Themistocles Assimes & Wolfgang C. Winkelmayer & Trevor Hastie, 2015. "Detecting clinically meaningful biomarkers with repeated measurements: An illustration with electronic health records," Biometrics, The International Biometric Society, vol. 71(2), pages 478-486, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:106:y:2017:i:c:p:153-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.