IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1973-d1129830.html
   My bibliography  Save this article

Application of an Intensive Longitudinal Functional Model with Multiple Time Scales in Objectively Measured Children’s Physical Activity

Author

Listed:
  • Mostafa Zahed

    (Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, USA)

  • Trent Lalonde

    (Colorado Department of Human Services, Denver, CO 80203, USA)

  • Maryam Skafyan

    (Department of Applied Statistics and Research Methods, University of Northern Colroado, Greeley, CO 80639, USA)

Abstract

This study proposes an intensive longitudinal functional model with multiple time-varying scales and subject-specific random intercepts through mixed model equivalence that includes multiple functional predictors, one or more scalar covariates, and one or more scalar covariates. An estimation framework is proposed for estimating a time-varying coefficient function that is modeled as a linear combination of time-invariant functions with time-varying coefficients. The model takes advantage of the information structure of the penalty, while the estimation procedure utilizes the equivalence between penalized least squares estimation and linear mixed models. A number of simulations are conducted in order to empirically evaluate the process. In the simulation, it was observed that mean square errors for functional coefficients decreased with increasing sample size and level of association. Additionally, sample size had a greater impact on a smaller level of association, and level of association also had a greater impact on a smaller sample size. These results provide empirical evidence that ILFMM estimates of functional coefficients are close to the true functional estimate (basically unchanged). In addition, the results indicated that the AIC could be used to guide the choice of ridge weights. Moreover, when ridge weight ratios were sufficiently large, there was minimal impact on estimation performance. Studying two time scales is important in a wide range of fields, including physics, chemistry, biology, engineering, economics, and more. It allows researchers to gain a better understanding of complex systems and processes that operate over different time frames. Consequently, studying physical activities with two time scales is critical for advancing our understanding of human performance and health and for developing effective strategies to optimize physical activity and exercise programs. Therefore, the proposed model was applied to analyze the physical activity data from the Active Schools Institute of the University of Northern Colorado to determine what kind of time-structure patterns of activities could adequately describe the relationship between daily total magnitude and kids’ daily and weekly physical activity.

Suggested Citation

  • Mostafa Zahed & Trent Lalonde & Maryam Skafyan, 2023. "Application of an Intensive Longitudinal Functional Model with Multiple Time Scales in Objectively Measured Children’s Physical Activity," Mathematics, MDPI, vol. 11(8), pages 1-22, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1973-:d:1129830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeff Goldsmith & Ciprian M. Crainiceanu & Brian Caffo & Daniel Reich, 2012. "Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 453-469, May.
    2. J. Ramsay, 1982. "When the data are functions," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 379-396, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristhian Leonardo Urbano-Leon & Manuel Escabias & Diana Paola Ovalle-Muñoz & Javier Olaya-Ochoa, 2023. "Scalar Variance and Scalar Correlation for Functional Data," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    2. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    3. Jianping Zhu & Futian Weng & Muni Zhuang & Xin Lu & Xu Tan & Songjie Lin & Ruoyi Zhang, 2022. "Revealing Public Opinion towards the COVID-19 Vaccine with Weibo Data in China: BertFDA-Based Model," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    4. Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
    5. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    6. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    7. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    8. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    9. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    10. Shujie Ma, 2016. "Estimation and inference in functional single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 181-208, February.
    11. Ismail Shah & Naveed Gul & Sajid Ali & Hassan Houmani, 2024. "Short-Term Hourly Ozone Concentration Forecasting Using Functional Data Approach," Econometrics, MDPI, vol. 12(2), pages 1-21, May.
    12. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    13. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    14. Boudreault, Jeremie & Bergeron, Normand E & St-Hilaire, Andre & Chebana, Fateh, 2022. "A new look at habitat suitability curves through functional data analysis," Ecological Modelling, Elsevier, vol. 467(C).
    15. Dai, Ning & Jones, Galin L. & Fiecas, Mark, 2020. "Bayesian longitudinal spectral estimation with application to resting-state fMRI data analysis," Econometrics and Statistics, Elsevier, vol. 15(C), pages 104-116.
    16. Cao, Guanqun & Wang, Li, 2018. "Simultaneous inference for the mean of repeated functional data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 279-295.
    17. Angel Calderon-Madrid & Alexandru Voicu, 2011. "The NAFTA tide: Lifting the larger and better boats," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 20(4), pages 467-505.
    18. Boente, Graciela & Fraiman, Ricardo, 2000. "Kernel-based functional principal components," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 335-345, July.
    19. James Cameron & Pramita Bagchi, 2022. "A test for heteroscedasticity in functional linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 519-542, June.
    20. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1973-:d:1129830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.