IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i515p1050-1060.html
   My bibliography  Save this article

Parameterization of White Matter Manifold-Like Structures Using Principal Surfaces

Author

Listed:
  • Chen Yue
  • Vadim Zipunnikov
  • Pierre-Louis Bazin
  • Dzung Pham
  • Daniel Reich
  • Ciprian Crainiceanu
  • Brian Caffo

Abstract

In this article, we are concerned with data generated from a diffusion tensor imaging (DTI) experiment. The goal is to parameterize manifold-like white matter tracts, such as the corpus callosum, using principal surfaces. The problem is approached by finding a geometrically motivated surface-based representation of the corpus callosum and visualized fractional anisotropy (FA) values projected onto the surface. The method also applies to any other diffusion summary. An algorithm is proposed that (a) constructs the principal surface of a corpus callosum; (b) flattens the surface into a parametric two-dimensional (2D) map; and (c) projects associated FA values on the map. The algorithm is applied to a longitudinal study containing 466 diffusion tensor images of 176 multiple sclerosis (MS) patients observed at multiple visits. For each subject and visit, the study contains a registered DTI scan of the corpus callosum at roughly 20,000 voxels. Extensive simulation studies demonstrate fast convergence and robust performance of the algorithm under a variety of challenging scenarios.

Suggested Citation

  • Chen Yue & Vadim Zipunnikov & Pierre-Louis Bazin & Dzung Pham & Daniel Reich & Ciprian Crainiceanu & Brian Caffo, 2016. "Parameterization of White Matter Manifold-Like Structures Using Principal Surfaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1050-1060, July.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1050-1060
    DOI: 10.1080/01621459.2016.1164050
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1164050
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1164050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    2. Jeff Goldsmith & Ciprian M. Crainiceanu & Brian Caffo & Daniel Reich, 2012. "Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 453-469, May.
    3. Caffo, Brian S. & Crainiceanu, Ciprian M. & Deng, Lijuan & Hendrix, Craig W., 2008. "A Case Study in Pharmacologic Colon Imaging Using Principal Curves in Single-Photon Emission Computed Tomography," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1470-1480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Meng & Ani Eloyan, 2021. "Principal manifold estimation via model complexity selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 369-394, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    2. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    3. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    5. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    6. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    7. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    8. Paolo Veneri, 2018. "Urban spatial structure in OECD cities: Is urban population decentralising or clustering?," Papers in Regional Science, Wiley Blackwell, vol. 97(4), pages 1355-1374, November.
    9. Schwemmer, Philipp & Güpner, Franziska & Adler, Sven & Klingbeil, Knut & Garthe, Stefan, 2016. "Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors," Ecological Modelling, Elsevier, vol. 320(C), pages 322-333.
    10. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    11. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    12. Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.
    13. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    15. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    16. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    17. Dazhou Lei & Hao Hu & Dongyang Geng & Jianshen Zhang & Yongzhi Qi & Sheng Liu & Zuo‐Jun Max Shen, 2023. "New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 655-673, February.
    18. ferrara, giancarlo & campagna, arianna & bucci, valeria & atella, vincenzo, 2021. "Presumptive taxation and firms’ efficiency: an integrated approach for tax compliance analysis," MPRA Paper 111516, University Library of Munich, Germany.
    19. Ronald E. Gangnon & Natasha K. Stout & Oguzhan Alagoz & John M. Hampton & Brian L. Sprague & Amy Trentham-Dietz, 2018. "Contribution of Breast Cancer to Overall Mortality for US Women," Medical Decision Making, , vol. 38(1_suppl), pages 24-31, April.
    20. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1050-1060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.