IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922004003.html
   My bibliography  Save this article

Transition from localized to mean field behaviour of cascading failures in the fiber bundle model on complex networks

Author

Listed:
  • Batool, Attia
  • Pál, Gergő
  • Danku, Zsuzsa
  • Kun, Ferenc

Abstract

We study the failure process of fiber bundles on complex networks focusing on the effect of the degree of disorder of fibers' strength on the transition from localized to mean field behaviour. Starting from a regular square lattice we apply the Watts-Strogatz rewiring technique to introduce long range random connections in the load transmission network and analyze how the ultimate strength of the bundle and the statistics of the size of failure cascades change when the rewiring probability is gradually increased. Our calculations revealed that the degree of strength disorder of nodes of the network has a substantial effect on the localized to mean field transition. In particular, we show that the transition sets on at a finite value of the rewiring probability, which shifts to higher values as the degree of disorder is reduced. The transition is limited to a well defined range of disorder, so that there exists a threshold disorder of nodes' strength below which the randomization of the network structure does not provide any improvement neither of the overall load bearing capacity nor of the cascade tolerance of the system. At low strength disorder the fully random network is the most stable one, while at high disorder best cascade tolerance is obtained at a lower structural randomness. Based on the interplay of the network structure and strength disorder we construct an analytical argument which provides a reasonable description of the numerical findings.

Suggested Citation

  • Batool, Attia & Pál, Gergő & Danku, Zsuzsa & Kun, Ferenc, 2022. "Transition from localized to mean field behaviour of cascading failures in the fiber bundle model on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922004003
    DOI: 10.1016/j.chaos.2022.112190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frasca, Mattia & Gambuzza, Lucia Valentina, 2021. "Control of cascading failures in dynamical models of power grids," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Zapperi, Stefano & Ray, Purusattam & Stanley, H.Eugene & Vespignani, Alessandro, 1999. "Analysis of damage clusters in fracture processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 57-62.
    3. James P. Gleeson & Rick Durrett, 2017. "Temporal profiles of avalanches on networks," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    4. Jian-Feng Zheng & Zi-You Gao & Xiao-Mei Zhao & Bai-Bai Fu, 2008. "Extended Fiber Bundle Model For Traffic Jams On Scale-Free Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(11), pages 1727-1735.
    5. Chakrabarti, Bikas K., 2006. "A fiber bundle model of traffic jams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 162-166.
    6. Dou, Bing-Lin & Wang, Xue-Guang & Zhang, Shi-Yong, 2010. "Robustness of networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2310-2317.
    7. Ouyang, Bo & Teng, Zhaosheng & Tang, Qiu, 2016. "Dynamics in local influence cascading models," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 182-186.
    8. Uma Divakaran & Amit Dutta, 2007. "Fibers On A Graph With Local Load Sharing," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 919-926.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    2. Cumelles, Joel & Lordan, Oriol & Sallan, Jose M., 2021. "Cascading failures in airport networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    3. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    5. Xia, Yongxiang & Wang, Cong & Shen, Hui-Liang & Song, Hainan, 2020. "Cascading failures in spatial complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Zhu, Qian & Zhu, Zhiliang & Qi, Yi & Yu, Hai & Xu, Yanjie, 2018. "Optimization of cascading failure on complex network based on NNIA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 42-51.
    7. Jing, Ke & Du, Xinru & Shen, Lixin & Tang, Liang, 2019. "Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Mohammad Taghitahooneh & Aidin Shaghaghi & Reza Dashti & Abolfazl Ahmadi, 2024. "A review of failure rate studies in power distribution networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3571-3584, August.
    9. Andrey Dmitriev & Victor Dmitriev & Stepan Balybin, 2019. "Self-Organized Criticality on Twitter: Phenomenological Theory and Empirical Investigation Based on Data Analysis Results," Complexity, Hindawi, vol. 2019, pages 1-16, December.
    10. Xu, Sheng & Xia, Yongxiang & Ouyang, Min, 2020. "Effect of resource allocation to the recovery of scale-free networks during cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    11. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Chen, Siyuan & Qin, Shaoyang, 2022. "Identifying the critical road combination in urban roads network under multiple disruption scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Kádár, Viktória & Danku, Zsuzsa & Pál, Gergő & Kun, Ferenc, 2022. "Approach to failure through record breaking avalanches in a heterogeneous stress field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    13. Shen, Yi & Song, Guohao & Xu, Huangliang & Xie, Yuancheng, 2020. "Model of node traffic recovery behavior and cascading congestion analysis in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Gao, Yanli & Liang, Chongsheng & Zhou, Jie & Chen, Shiming, 2023. "Robustness optimization of aviation-high-speed rail coupling network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    15. Wu, Tingwei & Xia, Yongxiang & Liang, Yuanyuan, 2024. "Load cascades in spatial networks: A sandpile model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).
    16. Wang, Kai & Zhang, Bu-han & Zhang, Zhe & Yin, Xiang-gen & Wang, Bo, 2011. "An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4692-4701.
    17. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    18. Peng, Xingzhao & Yao, Hong & Du, Jun & Wang, Zhe & Ding, Chao, 2015. "Invulnerability of scale-free network against critical node failures based on a renewed cascading failure model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 69-77.
    19. Li, Zhenpeng & Tang, Xijin, 2019. "Robustness of complex networks to cascading failures induced by Poisson fluctuating loads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    20. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Post-Print halshs-02588551, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922004003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.