IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v83y2016icp97-104.html
   My bibliography  Save this article

Fractal analysis of Jackson Pollock's painting evolution

Author

Listed:
  • Alvarez-Ramirez, J.
  • Ibarra-Valdez, C.
  • Rodriguez, E.

Abstract

By mid-1940s, Jackson Pollock, one of the most influential artists in the twentieth century plastic art, developed a unique painting technique (pouring and dripping) to generate complex non-figurative patterns. It has been argued that methods from fractality theory are suitable for characterizing these complex patterns. In fact, recent studies have shown that, indeed, Pollock's drip paintings are fractal, multifractal, multiscaling and evolved to higher complexity from 1945 to 1950. However, the development of this drip and pouring technique was neither instantaneous nor spontaneous, but influenced by diverse cultural and personal factors along of Pollock's life. The aim of this work is to study the evolution of some fractality indices of Pollock's paintings for the period from 1930 to 1955 and, in this form, detect changes in this painting technique and relate them to major cultural influences. To this end, about 30 paintings are analyzed by applying a two-dimensional detrended fluctuation analysis (DFA). Results indicate two large shifts in the fractality indices. One transition involves a change in the correlations dimension by 1937, while a second transition implicates a shift in the short-scale Hurst exponent by 1945-1946. Based on descriptions from Pollock's biographers, it is postulated that the first change may be strongly influenced by Mexican muralist Siqueiros and the second one by the moving of Jackson Pollock and Lee Krasner for living in the natural landscapes at Springs, Long Island. Our findings in this work support these claims.

Suggested Citation

  • Alvarez-Ramirez, J. & Ibarra-Valdez, C. & Rodriguez, E., 2016. "Fractal analysis of Jackson Pollock's painting evolution," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 97-104.
  • Handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:97-104
    DOI: 10.1016/j.chaos.2015.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915003999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.11.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvarez-Ramirez, Jose & Ibarra-Valdez, Carlos & Rodriguez, Eduardo & Dagdug, Leonardo, 2008. "1/f-Noise structures in Pollocks's drip paintings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 281-295.
    2. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neelakshi, J. & Rosa, Reinaldo R. & Savio, Siomel & Stephany, Stephan & de Meneses, Francisco C. & Kherani, Esfhan Alam & Muralikrishna, P., 2022. "Multifractal characteristics of the low latitude equatorial ionospheric E–F valley region irregularities," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    5. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    6. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    7. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    9. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    10. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    11. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    13. Yun-Jung Lee & Neung-Woo Kim & Ki-Hong Choi & Seong-Min Yoon, 2020. "Analysis of the Informational Efficiency of the EU Carbon Emission Trading Market: Asymmetric MF-DFA Approach," Energies, MDPI, vol. 13(9), pages 1-14, May.
    14. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    15. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    16. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    17. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    18. Zheng, Zeyu & Xiao, Rui & Shi, Haibo & Li, Guihong & Zhou, Xiaofeng, 2015. "Statistical regularities of Carbon emission trading market: Evidence from European Union allowances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 9-15.
    19. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    20. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Upside-Downside Multifractality and Efficiency of Green Bonds: The Roles of Global Factors and COVID-19," Finance Research Letters, Elsevier, vol. 43(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:97-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.