IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v71y2015icp91-99.html
   My bibliography  Save this article

Inferring to individual diversity promotes the cooperation in the spatial prisoner’s dilemma game

Author

Listed:
  • Ding, Shuai
  • Wang, Juan
  • Ruan, Sumei
  • Xia, Chengyi

Abstract

We explore the evolution of cooperation in a spatial prisoner’s dilemma game in which the individual diversity is taken into account. In our model, all players are divided into two types which own different strategy spreading factors, hence the evolution of strategy (i.e., cooperation or defection) distribution is not only determined by an iterated strategy adoption from a randomly selected neighbor according to a probability related with their payoff difference, but also by the type of the chosen neighbor. For an influential players (i.e., A-type), we fix the multiplicative factor of strategy transfer to be 1.0; But for the non-influential ones (i.e., B-type), we impose a multiplicative factor (w⩽1.0) during the process of strategy adoption, and within the whole population w will follow a uniform or an exponential distribution among the given ranges. Large quantities of simulations indicate that the cooperation will be highly varied for different neighborhood setup (k=4, 8 and 24) when we integrate this kind of distributed multiplicative factor into the strategy evolution. Meanwhile, the clustering of cooperators are substantially facilitated by the individual diversity. Our numerical results can help to further illustrate the evolution of cooperation under the real-world circumstances.

Suggested Citation

  • Ding, Shuai & Wang, Juan & Ruan, Sumei & Xia, Chengyi, 2015. "Inferring to individual diversity promotes the cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 91-99.
  • Handle: RePEc:eee:chsofr:v:71:y:2015:i:c:p:91-99
    DOI: 10.1016/j.chaos.2014.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914002343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen Wang & Lin Wang & Zi-Yu Yin & Cheng-Yi Xia, 2012. "Inferring Reputation Promotes the Evolution of Cooperation in Spatial Social Dilemma Games," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    2. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    3. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    4. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    5. Keizo Shigaki & Zhen Wang & Jun Tanimoto & Eriko Fukuda, 2013. "Effect of Initial Fraction of Cooperators on Cooperative Behavior in Evolutionary Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-7, November.
    6. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    7. Zhu, Cheng-jie & Sun, Shi-wen & Wang, Li & Ding, Shuai & Wang, Juan & Xia, Cheng-yi, 2014. "Promotion of cooperation due to diversity of players in the spatial public goods game with increasing neighborhood size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 145-154.
    8. Karthik Panchanathan & Robert Boyd, 2004. "Indirect reciprocity can stabilize cooperation without the second-order free rider problem," Nature, Nature, vol. 432(7016), pages 499-502, November.
    9. Zhi-Qin Ma & Cheng-Yi Xia & Shi-Wen Sun & Li Wang & Huai-Bin Wang & Juan Wang, 2011. "Heterogeneous Link Weight Promotes The Cooperation In Spatial Prisoner'S Dilemma," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1257-1268.
    10. Xia, Cheng-yi & Ma, Zhi-qin & Wang, Zhen & Wang, Juan, 2012. "Evaluating fitness by integrating the highest payoff within the neighborhood promotes cooperation in social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6440-6447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Nezarat & GH Dastghaibifard, 2015. "Efficient Nash Equilibrium Resource Allocation Based on Game Theory Mechanism in Cloud Computing by Using Auction," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-29, October.
    2. Shu, Gang & Du, Xia & Li, Ya, 2016. "Surrounding information consideration promotes cooperation in Prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 689-694.
    3. Lang, Rongling & Li, Tao & Mo, Desen & Shi, Yongtang, 2016. "A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 115-121.
    4. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Li-Gao,, 2018. "Multigames with social punishment and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 164-170.
    5. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2018. "An algorithm to compute data diversity index in spatial networks," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 63-75.
    6. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.
    7. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    8. Rense Corten & Stephanie Rosenkranz & Vincent Buskens & Karen S Cook, 2016. "Reputation Effects in Social Networks Do Not Promote Cooperation: An Experimental Test of the Raub & Weesie Model," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-17, July.
    9. Geng, Yini & Shen, Chen & Hu, Kaipeng & Shi, Lei, 2018. "Impact of punishment on the evolution of cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 540-545.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    2. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    3. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    4. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    5. Tian, Lin-Lin & Li, Ming-Chu & Lu, Kun & Zhao, Xiao-Wei & Wang, Zhen, 2013. "The influence of age-driven investment on cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 65-70.
    6. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.
    7. Ding, Chenxi & Wang, Juan & Zhang, Ying, 2016. "Impact of self interaction on the evolution of cooperation in social spatial dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 393-399.
    8. Wang, Zhen & Wu, Bin & Li, Ya-peng & Gao, Hang-xian & Li, Ming-chu, 2013. "Does coveting the performance of neighbors of thy neighbor enhance spatial reciprocity?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 28-34.
    9. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    10. Juan Wang & Wenwen Lu & Lina Liu & Li Li & Chengyi Xia, 2016. "Utility Evaluation Based on One-To-N Mapping in the Prisoner’s Dilemma Game for Interdependent Networks," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    11. Lu, Kun & Wu, Bin & Li, Ming-chu & Wang, Zhen, 2014. "Other-regarding preference causing ping-pong effect in self-questioning game," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 51-58.
    12. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    13. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    14. Genki Ichinose & Masaya Saito & Shinsuke Suzuki, 2013. "Collective Chasing Behavior between Cooperators and Defectors in the Spatial Prisoner’s Dilemma," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    15. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    16. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.
    17. Cristina Acedo-Carmona & Antoni Gomila, 2014. "Personal Trust Increases Cooperation beyond General Trust," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    18. Zhang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Yan, Ming & Li, Yu, 2019. "Strategy preference promotes cooperation in spatial evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 181-188.
    19. Xia, Chengyi & Wang, Juan & Wang, Li & Sun, Shiwen & Sun, Junqing & Wang, Jinsong, 2012. "Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1239-1245.
    20. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:71:y:2015:i:c:p:91-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.