IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v57y2013icp62-72.html
   My bibliography  Save this article

Financial Time Operator for random walk markets

Author

Listed:
  • Gialampoukidis, I.
  • Gustafson, K.
  • Antoniou, I.

Abstract

Based on previous work on non-equilibrium statistical mechanics, and the recent extensions of Time Operators to observations and financial processes, we construct a general Time Operator for non-stationary Bernoulli Processes. The Age and the innovation probabilities are defined and discussed in detail and a formula is presented for the special case of random walks. The formulas reduce the computations to variance estimations. Assuming that a stock market price evolves according to a random walk, we illustrate a financial application. We provide an Age estimator from historical stock market data. As an illustration we compute the Age of Greek financial market during elections and we compare with the Age of another period with less irregular events. The Age of a process is a new statistical index, assessing the average level of innovations during the observation period, resulting from the underlying complexity of the system.

Suggested Citation

  • Gialampoukidis, I. & Gustafson, K. & Antoniou, I., 2013. "Financial Time Operator for random walk markets," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 62-72.
  • Handle: RePEc:eee:chsofr:v:57:y:2013:i:c:p:62-72
    DOI: 10.1016/j.chaos.2013.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913001690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Misra, B. & Prigogine, I. & Courbage, M., 1979. "From deterministic dynamics to probabilistic descriptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 98(1), pages 1-26.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Antoniou, I. & Gustafson, K., 1999. "Wavelets and stochastic processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 49(1), pages 81-104.
    4. Courbage, M., 1983. "Intrinsic irreversibility of Kolmogorov dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 122(3), pages 459-482.
    5. Courbage, M. & Misra, B., 1980. "On the equivalence between Bernoulli dynamical systems and stochastic Markov processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 104(3), pages 359-377.
    6. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    7. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gialampoukidis, I. & Gustafson, K. & Antoniou, I., 2014. "Time operator of Markov chains and mixing times. Applications to financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 141-155.
    2. Gialampoukidis, Ilias & Antoniou, Ioannis, 2015. "Age, Innovations and Time Operator of Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 140-155.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gialampoukidis, I. & Gustafson, K. & Antoniou, I., 2014. "Time operator of Markov chains and mixing times. Applications to financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 141-155.
    2. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    3. Min Zhang & Adam W. Kolkiewicz & Tony S. Wirjanto & Xindan Li, 2013. "The Impacts of Financial Crisis on Sovereign Credit Risk Analysis in Asia and Europe," Working Paper series 62_13, Rimini Centre for Economic Analysis.
    4. Thierry Chauveau & Sylvain Friederich & Jérôme Héricourt & Emmanuel Jurczenko & Catherine Lubochinsky & Bertrand Maillet & Christophe Moussu & Bogdan Négréa & Hélène Raymond-Feingold, 2004. "La volatilité des marchés augmente-t-elle ?," Revue d'Économie Financière, Programme National Persée, vol. 74(1), pages 17-44.
    5. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
    6. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    7. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    8. Muneer Shaik & S. Maheswaran, 2020. "A new unbiased additive robust volatility estimation using extreme values of asset prices," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 313-347, September.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    10. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
    11. Chou, Ray Yeutien & Liu, Nathan, 2010. "The economic value of volatility timing using a range-based volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2288-2301, November.
    12. Chou, Ray Yeutien & Cai, Yijie, 2009. "Range-based multivariate volatility model with double smooth transition in conditional correlation," Global Finance Journal, Elsevier, vol. 20(2), pages 137-152.
    13. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
    14. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    15. Rodrigo A. Alfaro & Carmen Gloria Silva, 2008. "Volatilidad de Indices Accionarios: El caso del IPSA," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 45(132), pages 217-233.
    16. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    17. Lam, K.P. & Ng, H.S., 2009. "Intra-daily information of range-based volatility for MEM-GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2625-2632.
    18. Stefano Lovo & Philippe Raimbourg & Federica Salvadè, 2022. "Credit rating agencies, information asymmetry and US bond liquidity," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 49(9-10), pages 1863-1896, October.
    19. Zitis, Pavlos I. & Contoyiannis, Yiannis & Potirakis, Stelios M., 2022. "Critical dynamics related to a recent Bitcoin crash," International Review of Financial Analysis, Elsevier, vol. 84(C).
    20. Parthajit Kayal & Sumanjay Dutta & Vipul Khandelwal & Rakesh Nigam, 2021. "Information Theoretic Ranking of Extreme Value Returns," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:57:y:2013:i:c:p:62-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.