IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v56y2013icp6-12.html
   My bibliography  Save this article

Cooperation in harsh environments and the emergence of spatial patterns

Author

Listed:
  • Smaldino, Paul E.

Abstract

This paper concerns the confluence of two important areas of research in mathematical biology: spatial pattern formation and cooperative dilemmas. Mechanisms through which social organisms form spatial patterns are not fully understood. Prior work connecting cooperation and pattern formation has often included unrealistic assumptions that shed doubt on the applicability of those models toward understanding real biological patterns. I investigated a more biologically realistic model of cooperation among social actors. The environment is harsh, so that interactions with cooperators are strictly needed to survive. Harshness is implemented via a constant energy deduction. I show that this model can generate spatial patterns similar to those seen in many naturally-occuring systems. Moreover, for each payoff matrix there is an associated critical value of the energy deduction that separates two distinct dynamical processes. In low-harshness environments, the growth of cooperator clusters is impeded by defectors, but these clusters gradually expand to form dense dendritic patterns. In very harsh environments, cooperators expand rapidly but defectors can subsequently make inroads to form reticulated patterns. The resulting web-like patterns are reminiscent of transportation networks observed in slime mold colonies and other biological systems.

Suggested Citation

  • Smaldino, Paul E., 2013. "Cooperation in harsh environments and the emergence of spatial patterns," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 6-12.
  • Handle: RePEc:eee:chsofr:v:56:y:2013:i:c:p:6-12
    DOI: 10.1016/j.chaos.2013.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913000921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Bonabeau, 1997. "From Classical Models of Morphogenesis to Agent-Based Models of Pattern Formation," Working Papers 97-07-063, Santa Fe Institute.
    2. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    3. Smaldino, Paul E. & Schank, Jeffrey C., 2012. "Movement patterns, social dynamics, and the evolution of cooperation," Theoretical Population Biology, Elsevier, vol. 82(1), pages 48-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez, Irene & Janssen, Marco A., 2015. "The effect of spatial heterogeneity and mobility on the performance of social–ecological systems," Ecological Modelling, Elsevier, vol. 296(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez, Irene & Janssen, Marco A., 2015. "The effect of spatial heterogeneity and mobility on the performance of social–ecological systems," Ecological Modelling, Elsevier, vol. 296(C), pages 1-11.
    2. Li, Yan & Ye, Hang, 2018. "Effect of the migration mechanism based on risk preference on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 621-632.
    3. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    4. Takahara, Akihiro & Sakiyama, Tomoko, 2023. "Twisted strategy may enhance the evolution of cooperation in spatial prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    5. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    6. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    7. Sahoo, Debgopal & Samanta, Guruprasad, 2023. "Modeling cooperative evolution in prey species using the snowdrift game with evolutionary impact on prey–predator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    9. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    10. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    11. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    12. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    13. Su, Ran & Fang, Zhi-Ming & Hao, Qing-Yi & Sheng, Chun & Fu, Yuan-Jiao, 2024. "The evolution of cooperation affected by unidirectional acceptability mechanism on interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    14. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    15. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.
    16. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    17. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    18. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    19. Xiang Wei & Peng Xu & Shuiting Du & Guanghui Yan & Huayan Pei, 2021. "Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-7, October.
    20. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Chang, Shuhua, 2019. "Impact of probabilistic incentives on the evolution of cooperation in complex topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 307-314.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:56:y:2013:i:c:p:6-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.