IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i1p64-69.html
   My bibliography  Save this article

Spatial coherence resonance in neuronal media with discrete local dynamics

Author

Listed:
  • Perc, Matjaž

Abstract

We study effects of spatiotemporal additive noise on the spatial dynamics of excitable neuronal media that is locally modelled by a two-dimensional map. We focus on the ability of noise to enhance a particular spatial frequency of the media in a resonant manner. We show that there exists an optimal noise intensity for which the inherent spatial periodicity of the media is resonantly pronounced, thus marking the existence of spatial coherence resonance in the studied system. Additionally, results are discussed in view of their possible biological importance.

Suggested Citation

  • Perc, Matjaž, 2007. "Spatial coherence resonance in neuronal media with discrete local dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 64-69.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:64-69
    DOI: 10.1016/j.chaos.2005.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905008726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Meifeng & Han, Bo & Xu, Li & Zhang, Guang, 2013. "Spiral patterns near Turing instability in a discrete reaction diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 1-6.
    2. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    3. Xie, Huijuan & Gong, Yubing, 2017. "Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 80-85.
    4. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    5. Lu, Guangqing & Smidtaite, Rasa & Navickas, Zenonas & Ragulskis, Minvydas, 2018. "The Effect of Explosive Divergence in a Coupled Map Lattice of Matrices," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 308-313.
    6. Ford, Neville J. & Lima, Pedro M. & Lumb, Patricia M., 2017. "Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh–Nagumo equation," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 448-460.
    7. Wang, Li & Gong, Yubing & Lin, Xiu, 2012. "Ordered chaotic bursting and multiple coherence resonance by time-periodic coupling strength in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 131-136.
    8. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    9. Yuan, Guoyong & Xu, Lin & Xu, Aiguo & Wang, Guangrui & Yang, Shiping, 2011. "Spiral waves in excitable media due to noise and periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 728-738.
    10. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:64-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.