IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i1p80-97.html
   My bibliography  Save this article

Chaos control and generalized projective synchronization of heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive variable structure control

Author

Listed:
  • Farivar, Faezeh
  • Aliyari Shoorehdeli, Mahdi
  • Nekoui, Mohammad Ali
  • Teshnehlab, Mohammad

Abstract

This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to verify the proposed control and synchronization methods. Finally, the effectiveness of the proposed methods is discussed.

Suggested Citation

  • Farivar, Faezeh & Aliyari Shoorehdeli, Mahdi & Nekoui, Mohammad Ali & Teshnehlab, Mohammad, 2012. "Chaos control and generalized projective synchronization of heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive variable structure control," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 80-97.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:1:p:80-97
    DOI: 10.1016/j.chaos.2011.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911002074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farivar, Faezeh & Shoorehdeli, Mahdi Aliyari & Nekoui, Mohammad Ali & Teshnehlab, Mohammad, 2009. "Generalized projective synchronization for chaotic systems via Gaussian Radial Basis Adaptive Backstepping Control," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 826-839.
    2. Zhang, Qing & Chen, Shihua & Hu, Yuanming & Wang, Changping, 2006. "Synchronizing the noise-perturbed unified chaotic system by sliding mode control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 317-324.
    3. Haeri, Mohammad & Tavazoei, Mohammad Saleh & Naseh, Majid Reza, 2007. "Synchronization of uncertain chaotic systems using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1230-1239.
    4. Harb, Ahmad M. & Zaher, Ashraf A. & Al-Qaisia, Ahmad A. & Zohdy, Mohammad A., 2007. "Recursive backstepping control of chaotic Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 639-645.
    5. Zhang, Qunjiao & Lu, Jun-an, 2008. "Chaos synchronization of a new chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 175-179.
    6. Yan, Jianping & Li, Changpin, 2005. "Generalized projective synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1119-1124.
    7. Yan, Jun-Juh & Yang, Yi-Sung & Chiang, Tsung-Ying & Chen, Ching-Yuan, 2007. "Robust synchronization of unified chaotic systems via sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 947-954.
    8. Feng, Jianwen & Xu, Chen & Tang, Jianliang, 2007. "Controlling Chen’s chaotic attractor using two different techniques based on parameter identification," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1413-1418.
    9. Haeri, Mohammad & Emadzadeh, Amir Abbas, 2007. "Synchronizing different chaotic systems using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 119-129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Farivar, Faezeh & Shoorehdeli, Mahdi Aliyari & Nekoui, Mohammad Ali & Teshnehlab, Mohammad, 2009. "Generalized projective synchronization for chaotic systems via Gaussian Radial Basis Adaptive Backstepping Control," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 826-839.
    3. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    4. Zhao, Yang & Wang, Wei, 2009. "Chaos synchronization in a Josephson junction system via active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 60-66.
    5. Cai, Na & Jing, Yuanwei & Zhang, Siying, 2009. "Generalized projective synchronization of different chaotic systems based on antisymmetric structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1190-1196.
    6. Zribi, Mohamed & Smaoui, Nejib & Salim, Haitham, 2009. "Synchronization of the unified chaotic systems using a sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3197-3209.
    7. Shirkavand, Mehrdad & Pourgholi, Mahdi & Yazdizadeh, Alireza, 2022. "Robust global fixed-time synchronization of different dimensions fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Naseh, Majid Reza & Haeri, Mohammad, 2009. "Robustness and robust stability of the active sliding mode synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 196-203.
    9. Zhao, Yang, 2009. "Synchronization of two coupled systems of J-J type using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3035-3041.
    10. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    11. Yanhao Ren & Qiang Luo & Wenlian Lu, 2023. "Synchronization Analysis of Linearly Coupled Systems with Signal-Dependent Noises," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    12. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    13. Al-Sawalha, Ayman, 2009. "Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1926-1932.
    14. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    15. Asemani, Mohammad Hassan & Majd, Vahid Johari, 2009. "Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1126-1135.
    16. Akinlar, Mehmet Ali & Tchier, Fairouz & Inc, Mustafa, 2020. "Chaos control and solutions of fractional-order Malkus waterwheel model," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    17. Pai, Ming-Chang, 2015. "Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 757-767.
    18. Aguilar-Bustos, A.Y. & Cruz-Hernández, C., 2009. "Synchronization of discrete-time hyperchaotic systems: An application in communications," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1301-1310.
    19. Li, Guo-Hui, 2007. "Generalized projective synchronization between Lorenz system and Chen’s system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1454-1458.
    20. López-Gutiérrez, R.M. & Posadas-Castillo, C. & López-Mancilla, D. & Cruz-Hernández, C., 2009. "Communicating via robust synchronization of chaotic lasers," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 277-285.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:1:p:80-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.