IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i12p1494-1500.html
   My bibliography  Save this article

Fractal dimensionality analysis of normal and cancerous mammary gland thermograms

Author

Listed:
  • Dumansky, Y.V.
  • Lyakh, Y.E.
  • Gorshkov, O.G.
  • Gurianov, V.G.
  • Prihodchenko, V.V.

Abstract

Thermography may enable early detection of a cancer tumour within a mammary gland at an early, treatable stage of the illness, but thermogram analysis methods must be developed to achieve this goal. This study analyses the feasibility of applying the Hurst exponent readings algorithm for evaluation of the high dimensionality fractals to reveal any possible difference between normal thermograms (NT) and malignant thermograms (MT). Thermograms were obtained using electronic contact thermography. Significant differences in the Hurst exponent readings for the MT and the NT were observed when comparing the following:

Suggested Citation

  • Dumansky, Y.V. & Lyakh, Y.E. & Gorshkov, O.G. & Gurianov, V.G. & Prihodchenko, V.V., 2012. "Fractal dimensionality analysis of normal and cancerous mammary gland thermograms," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1494-1500.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:12:p:1494-1500
    DOI: 10.1016/j.chaos.2012.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912001610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carbone, Anna & Stanley, H.Eugene, 2004. "Directed self-organized critical patterns emerging from fractional Brownian paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 544-551.
    2. Carbone, Anna & Stanley, H. Eugene, 2007. "Scaling properties and entropy of long-range correlated time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(1), pages 21-24.
    3. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    2. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    3. Kalimeri, M. & Papadimitriou, C. & Balasis, G. & Eftaxias, K., 2008. "Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1161-1172.
    4. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    5. Yao, Can-Zhong & Liu, Cheng & Ju, Wei-Jia, 2020. "Multifractal analysis of the WTI crude oil market, US stock market and EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    7. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    8. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    9. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Li, Shuping & Li, Jianfeng & Lu, Xinsheng & Sun, Yihong, 2022. "Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    12. Bashir, Usman & Yu, Yugang & Hussain, Muntazir & Zebende, Gilney F., 2016. "Do foreign exchange and equity markets co-move in Latin American region? Detrended cross-correlation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 889-897.
    13. Ruan, Qingsong & Huang, Ying & Jiang, Wei, 2016. "The exceedance and cross-correlations between the gold spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 139-151.
    14. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
    15. Pal, Mayukha & Kiran, V. Satya & Rao, P. Madhusudana & Manimaran, P., 2016. "Multifractal detrended cross-correlation analysis of genome sequences using chaos-game representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 288-293.
    16. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    17. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    18. Lv, Xiaodong & Shan, Xian, 2013. "Modeling natural gas market volatility using GARCH with different distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5685-5699.
    19. Zebende, G.F. & da Silva, M.F. & Machado Filho, A., 2013. "DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1756-1761.
    20. Ponta, Linda & Murialdo, Pietro & Carbone, Anna, 2021. "Information measure for long-range correlated time series: Quantifying horizon dependence in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:12:p:1494-1500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.