IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i5p2225-2232.html
   My bibliography  Save this article

An improvement on Marotto’s theorem and its applications to chaotification of switching systems

Author

Listed:
  • Zhao, Yi
  • Xie, Lingli
  • Yiu, K.F. Cedric

Abstract

The controversy surrounding the correctness of Marotto’s theorem continues over the last two decades, with many researchers claiming to have found an error in the proof. In this paper, we show that Marotto’s theorem is indeed correct for analyzing the existence of chaos in the sense of Li-Yorke even after relaxing certain assumptions in the proof. In addition, we extend the theory to derive the conditions for the existence of chaos in the sense of Devaney. We show that these results can be applied to study the chaotification of linear switching systems.

Suggested Citation

  • Zhao, Yi & Xie, Lingli & Yiu, K.F. Cedric, 2009. "An improvement on Marotto’s theorem and its applications to chaotification of switching systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2225-2232.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2225-2232
    DOI: 10.1016/j.chaos.2007.06.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marotto, F.R., 2005. "On redefining a snap-back repeller," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 25-28.
    2. Liu, Xinzhi & Teo, Kok-Lay & Zhang, Hongtao & Chen, Guanrong, 2006. "Switching control of linear systems for generating chaos," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 725-733.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamotsu Onozaki, 2018. "Nonlinearity, Bounded Rationality, and Heterogeneity," Springer Books, Springer, number 978-4-431-54971-0, January.
    2. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    3. Xiong, Lianglin & Zhong, Shouming & Ye, Mao & Wu, Shiliang, 2009. "New stability and stabilization for switched neutral control systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1800-1811.
    4. Liang, Wei & Lv, Xiaolin, 2022. "Li-Yorke chaos in a class of controlled delay difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Gluskin, Emanuel, 2009. "On one interesting case of switching nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1870-1872.
    6. Ekaterina Ekaterinchuk & Jochen Jungeilges & Tatyana Ryazanova & Iryna Sushko, 2017. "Dynamics of a minimal consumer network with uni-directional influence," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 831-857, November.
    7. Rahman, Aminur & Blackmore, Denis, 2017. "Threshold voltage dynamics of chaotic RS flip-Flops," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 555-566.
    8. Sun, Huijing & Cao, Hongjun, 2007. "Bifurcations and chaos of a delayed ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1383-1393.
    9. Li, Ping & Zhong, Shou-Ming & Cui, Jin-Zhong, 2009. "Stability analysis of linear switching systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 474-480.
    10. Ingrid Kubin & Laura Gardini, 2022. "On the significance of borders: the emergence of endogenous dynamics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(1), pages 41-62, January.
    11. Gardini, Laura & Hommes, Cars & Tramontana, Fabio & de Vilder, Robin, 2009. "Forward and backward dynamics in implicitly defined overlapping generations models," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 110-129, August.
    12. Stankevich, N.V. & Gonchenko, A.S. & Popova, E.S. & Gonchenko, S.V., 2023. "Complex dynamics of the simplest neuron model: Singular chaotic Shilnikov attractor as specific oscillatory neuron activity," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Dohtani, Akitaka, 2011. "Chaos resulting from nonlinear relations between different variables," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 290-297.
    15. Gardini, Laura & Sushko, Iryna & Avrutin, Viktor & Schanz, Michael, 2011. "Critical homoclinic orbits lead to snap-back repellers," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 433-449.
    16. Chen, Shyan-Shiou & Shih, Chih-Wen, 2009. "Transiently chaotic neural networks with piecewise linear output functions," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 717-730.
    17. Elhafsi Boukhalfa & Elhadj Zeraoulia, 2014. "Existence of Super Chaotic Attractors in a General Piecewise Smooth Map of the Plane," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 12(1), pages 92-98.
    18. A. M. A. El-Sayed & S. M. Salman, 2019. "Dynamical analysis of a complex logistic-type map," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(2), pages 427-450, June.
    19. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    20. Li, Yan & Wang, Lidong, 2019. "Chaos in a duopoly model of technological innovation with bounded rationality based on constant conjectural variation," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 116-126.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2225-2232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.