IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i5p2138-2149.html
   My bibliography  Save this article

Coupled-expanding maps and one-sided symbolic dynamical systems

Author

Listed:
  • Shi, Yuming
  • Ju, Hyonhui
  • Chen, Guanrong

Abstract

This paper studies relationships between coupled-expanding maps and one-sided symbolic dynamical systems. The concept of coupled-expanding map is extended to a more general one: coupled-expansion for a transitive matrix. It is found that the subshift for a transitive matrix is strictly coupled-expanding for the matrix in certain disjoint compact subsets; the topological conjugacy of a continuous map in its compact invariant set of a metric space to a subshift for a transitive matrix has a close relationship with that the map is strictly coupled-expanding for the matrix in some disjoint compact subsets. A certain relationship between strictly coupled-expanding maps for a transitive matrix in disjoint bounded and closed subsets of a complete metric space and their topological conjugacy to the subshift for the matrix is also obtained. Dynamical behaviors of subshifts for irreducible matrices are then studied and several equivalent statements to chaos are obtained; especially, chaos in the sense of Li–Yorke is equivalent to chaos in the sense of Devaney for the subshift, and is also equivalent to that the domain of the subshift is infinite. Based on these results, several new criteria of chaos for maps are finally established via strict coupled-expansions for irreducible transitive matrices in compact subsets of metric spaces and in bounded and closed subsets of complete metric spaces, respectively, where their conditions are weaker than those existing in the literature.

Suggested Citation

  • Shi, Yuming & Ju, Hyonhui & Chen, Guanrong, 2009. "Coupled-expanding maps and one-sided symbolic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2138-2149.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2138-2149
    DOI: 10.1016/j.chaos.2007.06.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Yuming & Yu, Pei, 2006. "Study on chaos induced by turbulent maps in noncompact sets," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1165-1180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Hyonhui & Kim, Cholsan & Choe, Yunmi & Chen, Minghao, 2017. "Conditions for topologically semi-conjugacy of the induced systems to the subshift of finite type," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 1-6.
    2. Kim, Jinhyon & Ju, Hyonhui, 2018. "Hausdorff dimension of the sets of Li-Yorke pairs for some chaotic dynamical systems including A-coupled expanding systems," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 246-251.
    3. Kim, Cholsan & Ju, Hyonhui & Chen, Minghao & Raith, Peter, 2015. "A-coupled-expanding and distributional chaos," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 291-295.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gardini, Laura & Sushko, Iryna & Avrutin, Viktor & Schanz, Michael, 2011. "Critical homoclinic orbits lead to snap-back repellers," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 433-449.
    2. Kim, Cholsan & Ju, Hyonhui & Chen, Minghao & Raith, Peter, 2015. "A-coupled-expanding and distributional chaos," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 291-295.
    3. Kim, Jinhyon & Ju, Hyonhui, 2018. "Hausdorff dimension of the sets of Li-Yorke pairs for some chaotic dynamical systems including A-coupled expanding systems," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 246-251.
    4. Li, Zongcheng & Shi, Yuming & Zhang, Chao, 2008. "Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 746-761.
    5. Hongyan Zang & Jianying Liu & Jiu Li, 2021. "Construction of a Class of High-Dimensional Discrete Chaotic Systems," Mathematics, MDPI, vol. 9(4), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2138-2149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.