IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v222y1995i1p125-151.html
   My bibliography  Save this article

Units: Remarkable points in dynamical systems

Author

Listed:
  • Gallas, Jason A.C.

Abstract

In number theory, “units” are very special numbers characterized by having their norm equal to unity. So, in the real quadratic field Z (√3) the number of −2 + √3 ≅ −0.2679491924… is a unit because (−2 + √3) (−2 - √3) = 1. In this paper we determine precisely the numerical values of the coordinates of some points defined by multiple intersections of domains of stability in the parameter space of the Hénon map and, in all cases considered for which analytical calculations were feasible, find that such intersection points are invariably defined by units and by simple functions of units. The very special points defined by units are analogous to the familiar multicritical points in phase diagrams. Some simple consequences of the precise dynamics on the ground fields enforced by the equations of motion are discussed.

Suggested Citation

  • Gallas, Jason A.C., 1995. "Units: Remarkable points in dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 222(1), pages 125-151.
  • Handle: RePEc:eee:phsmap:v:222:y:1995:i:1:p:125-151
    DOI: 10.1016/0378-4371(95)00265-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437195002650
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(95)00265-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallas, Jason A.C., 1994. "Dissecting shrimps: results for some one-dimensional physical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 202(1), pages 196-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beims, Marcus W. & Gallas, Jason A.C., 1997. "Accumulation points in nonlinear parameter lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 225-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Medeiros, E.S. & de Souza, S.L.T. & Medrano-T, R.O. & Caldas, I.L., 2011. "Replicate periodic windows in the parameter space of driven oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 982-989.
    2. Oliveira, Diego F.M. & Leonel, Edson D., 2014. "Statistical and dynamical properties of a dissipative kicked rotator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 498-514.
    3. Rao, Xiao-Bo & Zhao, Xu-Ping & Chu, Yan-Dong & Zhang, Jian-Gang & Gao, Jian-She, 2020. "The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. dos Santos, Vagner & Szezech Jr., José D. & Baptista, Murilo S. & Batista, Antonio M. & Caldas, Iberê L., 2016. "Unstable dimension variability structure in the parameter space of coupled Hénon maps," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 23-28.
    5. de Souza, S.L.T. & Batista, A.M. & Baptista, M.S. & Caldas, I.L. & Balthazar, J.M., 2017. "Characterization in bi-parameter space of a non-ideal oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 224-231.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:222:y:1995:i:1:p:125-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.