IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp519-525.html
   My bibliography  Save this article

Parametric perturbation in a model that describes the neuronal membrane potential

Author

Listed:
  • da Costa, Diogo Ricardo
  • Hansen, Matheus
  • Batista, Antonio Marcos

Abstract

The Rulkov mapping is a phenomenological model that simulates the changes in the neuronal membrane potential. In this work, we introduce a parametric perturbation in the Rulkov map, that can be related to an unexpected behavior, such as a malfunction of the neuronal membrane due to pathologies. The perturbed system still keeps its main characteristics, which includes periodic behavior followed by chaotic bursts. We verify the existence of a set of periodic regions, known as shrimps, embedded in chaotic attractors in the system with parametric perturbation. Some changes in the phase space, time evolution of the variables and bifurcation diagrams are observed. Finally, we show the extreming curves, which demonstrate how is the organization of the periodic regions in the parameter space.

Suggested Citation

  • da Costa, Diogo Ricardo & Hansen, Matheus & Batista, Antonio Marcos, 2019. "Parametric perturbation in a model that describes the neuronal membrane potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 519-525.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:519-525
    DOI: 10.1016/j.physa.2018.09.160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313177
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djellit Ilhem & Kara Amel, 2006. "One-dimensional and two-dimensional dynamics of cubic maps," Discrete Dynamics in Nature and Society, Hindawi, vol. 2006, pages 1-13, August.
    2. Medeiros, E.S. & de Souza, S.L.T. & Medrano-T, R.O. & Caldas, I.L., 2011. "Replicate periodic windows in the parameter space of driven oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 982-989.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. da Costa, Diogo Ricardo & Rocha, Julia G.S. & de Paiva, Luam S. & Medrano-T, Rene O., 2021. "Logistic-like and Gauss coupled maps: The born of period-adding cascades," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klapcsik, Kálmán & Hegedűs, Ferenc, 2017. "The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 198-208.
    2. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Varga, Roxána & Klapcsik, Kálmán & Hegedűs, Ferenc, 2020. "Route to shrimps: Dissipation driven formation of shrimp-shaped domains," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. da Costa, Diogo Ricardo & Rocha, Julia G.S. & de Paiva, Luam S. & Medrano-T, Rene O., 2021. "Logistic-like and Gauss coupled maps: The born of period-adding cascades," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. de Souza, Silvio L.T. & Batista, Antonio M. & Caldas, Iberê L. & Iarosz, Kelly C. & Szezech Jr, José D., 2021. "Dynamics of epidemics: Impact of easing restrictions and control of infection spread," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:519-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.