IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i5p2804-2814.html
   My bibliography  Save this article

An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key

Author

Listed:
  • Zaher, Ashraf A.

Abstract

In this paper, a secure communication technique, using a chaotic system with a single adjustable parameter and a single observable time series, is proposed. The chosen chaotic system, which is a variant of the famous Rikitake model, has a special structure for which the adjustable parameter appears in the dynamic equation of the observable time series. This particular structure is used to build a synchronization-based state observer that is decoupled from the adaptive parameter identifier. A local Lyapunov function is used to design the parameter identifier, with an adjustable convergence rate that guarantees the stability of the overall system. A two-channel transmission method is used to exemplify the suggested technique where the secret message is encoded using a nonlinear function of both the chaotic states and the adjustable parameter of the chaotic system that acts as a secret key. Simulations show that, at the receiver, the signal can be efficiently retrieved only if the secret key is known, even when both the receiver and the transmitter are in perfect synchronization. The proposed technique is demonstrated to have improved security and privacy against intruders, when compared to other techniques reported in the literature, while being simple to implement using both analog and digital hardware. In addition, the chosen chaotic system is shown to be flexible in accommodating the transmission of signals with variable bandwidths, which promotes the superiority and versatility of the suggested secure communication technique.

Suggested Citation

  • Zaher, Ashraf A., 2009. "An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2804-2814.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:2804-2814
    DOI: 10.1016/j.chaos.2009.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Min & Meng, Guang & Feng, Zhengjin, 2006. "Security analysis of chaotic communication systems based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 264-270.
    2. Álvarez, G. & Montoya, F. & Romera, M. & Pastor, G., 2005. "Cryptanalyzing an improved security modulated chaotic encryption scheme using ciphertext absolute value," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1749-1756.
    3. Álvarez, G. & Li, Shujun & Montoya, F. & Pastor, G. & Romera, M., 2005. "Breaking projective chaos synchronization secure communication using filtering and generalized synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 775-783.
    4. Li, Shujun & Álvarez, Gonzalo & Chen, Guanrong, 2005. "Breaking a chaos-based secure communication scheme designed by an improved modulation method," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 109-120.
    5. Li, Chengqing & Li, Shujun & Alvarez, Gonzalo & Chen, Guanrong & Lo, Kwok-Tung, 2008. "Cryptanalysis of a chaotic block cipher with external key and its improved version," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 299-307.
    6. Chien, Tsun-I & Liao, Teh-Lu, 2005. "Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 241-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Vivek & Sharma, B.B. & Nath, R., 2017. "Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 51-58.
    2. Ma, Dazhong & Li, Xiaoyu & Sun, Qiuye & Xie, Xiangpeng, 2018. "Fault tolerant synchronization of chaotic systems with time delay based on the double event-triggered sampled control," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 20-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, S. & Chang, E. & Dillon, T. & Hwang, M. & Lee, C., 2009. "Identifying attributes and insecurity of a public-channel key exchange protocol using chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2569-2575.
    2. Yang, Jiyun & Liao, Xiaofeng & Yu, Wenwu & Wong, Kwok-wo & Wei, Jun, 2009. "Cryptanalysis of a cryptographic scheme based on delayed chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 821-825.
    3. Gao, Haojiang & Zhang, Yisheng & Liang, Shuyun & Li, Dequn, 2006. "A new chaotic algorithm for image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 393-399.
    4. Arroyo, David & Li, Chengqing & Li, Shujun & Alvarez, Gonzalo, 2009. "Cryptanalysis of a computer cryptography scheme based on a filter bank," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 410-413.
    5. Tang, Fang, 2008. "An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1090-1096.
    6. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    7. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    8. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    9. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    10. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    11. Chien, Tsun-I & Hung, Yung-Ching & Liao, Teh-Lu, 2006. "A non-correlator-based digital communication system using interleaved chaotic differential peaks keying (I-CDPK) modulation and chaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 965-977.
    12. Eisencraft, Marcio & Baccalá, Luiz Antonio, 2008. "The Cramer-Rao bound for initial conditions estimation of chaotic orbits," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 132-139.
    13. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    14. Sun, Yeong-Jeu, 2009. "A simple observer of the generalized Chen chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1641-1644.
    15. Li, Shujun & Álvarez, Gonzalo & Chen, Guanrong, 2005. "Breaking a chaos-based secure communication scheme designed by an improved modulation method," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 109-120.
    16. Banerjee, Santo, 2009. "Synchronization of time-delayed systems with chaotic modulation and cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 745-750.
    17. Zhiqin Qiao & Xianyi Li, 2014. "Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(3), pages 264-283, May.
    18. Qi, Guoyuan & van Wyk, Barend Jacobus & van Wyk, Michaël Antonie, 2009. "A four-wing attractor and its analysis," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2016-2030.
    19. Ge, Zheng-Ming & Lin, Guo-Hua, 2007. "The complete, lag and anticipated synchronization of a BLDCM chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 740-764.
    20. Li, Lixiang & Peng, Haipeng & Yang, Yixian & Wang, Xiangdong, 2009. "On the chaotic synchronization of Lorenz systems with time-varying lags," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 783-794.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:2804-2814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.