IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i5p2852-2857.html
   My bibliography  Save this article

Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization

Author

Listed:
  • Shu, Yonglu
  • Xu, Hongxing
  • Zhao, Yunhong

Abstract

In this paper, we investigate the ultimate bound and positively invariant set for a new chaotic system via the generalized Lyapunov function theory. For this system, we derive a three-dimensional ellipsoidal ultimate bound and positively invariant set. In addition, the two-dimensional bound with respect to x-z and y-z are established. Finally, the result is applied to the study of completely chaos synchronization, an exact threshold is given with the system parameters. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.

Suggested Citation

  • Shu, Yonglu & Xu, Hongxing & Zhao, Yunhong, 2009. "Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2852-2857.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:2852-2857
    DOI: 10.1016/j.chaos.2009.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yeong-Jeu, 2009. "Solution bounds of generalized Lorenz chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 691-696.
    2. Li, Damei & Wu, Xiaoqun & Lu, Jun-an, 2009. "Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1290-1296.
    3. Panchev, S. & Spassova, T. & Vitanov, N.K., 2007. "Analytical and numerical investigation of two families of Lorenz-like dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1658-1671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jun & Han, Zhengzhi & Cai, Xiushan & Liu, Leipo, 2011. "Uniformly ultimately bounded tracking control of linear differential inclusions with stochastic disturbance," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(12), pages 2662-2672.
    2. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Zhang, Fuchen & Shu, Yonglu & Yang, Hongliang & Li, Xiaowu, 2011. "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 137-144.
    4. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fuchen & Shu, Yonglu & Yang, Hongliang & Li, Xiaowu, 2011. "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 137-144.
    2. Wang, Haijun & Li, Xianyi, 2018. "A note on “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system” in [Appl. Math. Comput. 291 (2016) 323–339] by Amin Zarei and Saeed Tavakoli," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 1-4.
    3. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    4. Wang, Haijun & Dong, Guili, 2019. "New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 272-286.
    5. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    6. Vitanov, Nikolay K. & Hoffmann, Norbert P. & Wernitz, Boris, 2014. "Nonlinear time series analysis of vibration data from a friction brake: SSA, PCA, and MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 90-99.
    7. Zarei, Amin & Tavakoli, Saeed, 2016. "Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 323-339.
    8. Li, Lijie & Feng, Yu & Liu, Yongjian, 2016. "Dynamics of the stochastic Lorenz-Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 670-678.
    9. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    11. Samia Rezzag & Fuchen Zhang, 2022. "On the Dynamics of New 4D and 6D Hyperchaotic Systems," Mathematics, MDPI, vol. 10(19), pages 1-10, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:2852-2857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.