IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v91y2016icp670-678.html
   My bibliography  Save this article

Dynamics of the stochastic Lorenz-Haken system

Author

Listed:
  • Li, Lijie
  • Feng, Yu
  • Liu, Yongjian

Abstract

In this paper, the dynamics of the stochastic Lorenz-Haken system are discussed, and some new results are presented. Firstly, the asymptotic behavior of the stochastic Lorenz-Haken system is analyzed. The interesting thing is that all of solutions of the system can tend to zero under some parameters conditions and never go through the hyper-plane x=0 as the large time. Secondly, the globally exponential attractive set and a four-dimensional ellipsoidal ultimate boundary are derived. The two-dimensional parabolic ultimate bound with respect to x−u is also established. The numerical results to estimate the ultimate boundary are also presented for verification. Finally, the random attractor set and the bifurcation phenomenon for the system are analyzed.

Suggested Citation

  • Li, Lijie & Feng, Yu & Liu, Yongjian, 2016. "Dynamics of the stochastic Lorenz-Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 670-678.
  • Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:670-678
    DOI: 10.1016/j.chaos.2016.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916302557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Meng & Wang, Ke, 2012. "Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1541-1550.
    2. Xu, Yong & Gu, Rencai & Zhang, Huiqing, 2011. "Effects of random noise in a dynamical model of love," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 490-497.
    3. Wang, Jingyue & Wang, Haotian & Guo, Lixin, 2014. "Analysis of effect of random perturbation on dynamic response of gear transmission system," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 78-88.
    4. Li, Damei & Wu, Xiaoqun & Lu, Jun-an, 2009. "Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1290-1296.
    5. Zhao, Yu & Yuan, Sanling, 2016. "Stability in distribution of a stochastic hybrid competitive Lotka–Volterra model with Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 98-109.
    6. Zhang, Fuchen & Shu, Yonglu & Yang, Hongliang & Li, Xiaowu, 2011. "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 137-144.
    7. Ye, Zhiyong & Ji, Huihui & Zhang, He, 2016. "Passivity analysis of Markovian switching complex dynamic networks with multiple time-varying delays and stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 147-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haijun & Dong, Guili, 2019. "New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 272-286.
    2. Wang, Haijun & Li, Xianyi, 2018. "A note on “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system” in [Appl. Math. Comput. 291 (2016) 323–339] by Amin Zarei and Saeed Tavakoli," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 1-4.
    3. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2019. "Stochastic variability and transitions to chaos in a hierarchical three-species population model," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 276-283.
    4. Liu, Qun & Chen, Qingmei, 2015. "Dynamics of stochastic delay Lotka–Volterra systems with impulsive toxicant input and Lévy noise in polluted environments," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 52-67.
    5. Zhang, Liang & Liang, Jing & Feng, Zhiguang & Zhao, Ning, 2024. "Improved results of asynchronous mixed H∞ and passive control for discrete-time linear switched system with mode-dependent average dwell time," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    8. J. M. Muñoz-Pacheco & D. K. Guevara-Flores & O. G. Félix-Beltrán & E. Tlelo-Cuautle & J. E. Barradas-Guevara & C. K. Volos, 2018. "Experimental Verification of Optimized Multiscroll Chaotic Oscillators Based on Irregular Saturated Functions," Complexity, Hindawi, vol. 2018, pages 1-17, March.
    9. Pei, Xin & Zhan, Xiu-Xiu & Jin, Zhen, 2017. "Application of pair approximation method to modeling and analysis of a marriage network," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 280-293.
    10. Slepukhina, E. & Ryashko, L. & Kügler, P., 2020. "Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    11. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Shao, Yuanfu, 2022. "Global stability of a delayed predator–prey system with fear and Holling-type II functional response in deterministic and stochastic environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 65-77.
    13. Kim, Seong-S. & Choi, Han Ho, 2014. "Adaptive synchronization method for chaotic permanent magnet synchronous motor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 101(C), pages 31-42.
    14. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
    15. Kuang, Daipeng & Li, Jianli & Gao, Dongdong & Luo, Danfeng, 2024. "Stochastic near-optimal control for a system with Markovian switching and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    16. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    17. Zhang, Fuchen & Shu, Yonglu & Yang, Hongliang & Li, Xiaowu, 2011. "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 137-144.
    18. Zarei, Amin & Tavakoli, Saeed, 2016. "Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 323-339.
    19. Nian, Fuzhong & Liu, Xinmeng & Zhang, Yaqiong, 2018. "Sliding mode synchronization of fractional-order complex chaotic system with parametric and external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 22-28.
    20. Mi, Li-Na & Guo, Yong-Feng & Zhang, Meng & Zhuo, Xiao-Jing, 2023. "Stochastic resonance in gene transcriptional regulatory system driven by Gaussian noise and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:670-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.