IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v35y2008i4p718-725.html
   My bibliography  Save this article

A new class of interval projection neural networks for solving interval quadratic program

Author

Listed:
  • Ding, Ke
  • Huang, Nan-Jing

Abstract

In this paper, a new class of interval projection neural networks are introduced and studied, the equilibrium point of this neural networks is equivalent to the KT point of a class of interval quadratic program. By using fixed point theorem and constructing suitable Lyapunov functions, we obtain sufficient conditions to ensure the existence and global exponential stability for the unique equilibrium point of interval projection neural networks. In the last section, we give an example to illustrate the validity of our results.

Suggested Citation

  • Ding, Ke & Huang, Nan-Jing, 2008. "A new class of interval projection neural networks for solving interval quadratic program," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 718-725.
  • Handle: RePEc:eee:chsofr:v:35:y:2008:i:4:p:718-725
    DOI: 10.1016/j.chaos.2006.05.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906004930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.05.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    2. Li, Chuandong & Liao, Xiaofeng & Zhang, Rong & Prasad, Ashutosh, 2005. "Global robust exponential stability analysis for interval neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 751-757.
    3. Zhang, Hongbin & Li, Chunguang & Liao, Xiaofeng, 2005. "A note on the robust stability of neural networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 357-360.
    4. Y. S. Xia, 2004. "Further Results on Global Convergence and Stability of Globally Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(3), pages 627-649, September.
    5. Y. S. Xia & J. Wang, 2000. "On the Stability of Globally Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 106(1), pages 129-150, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ammar, E.E., 2009. "On fuzzy random multiobjective quadratic programming," European Journal of Operational Research, Elsevier, vol. 193(2), pages 329-341, March.
    2. Wu, Zeng-bao & Zou, Yun-zhi & Huang, Nan-jing, 2016. "A class of global fractional-order projective dynamical systems involving set-valued perturbations," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 23-33.
    3. Jin-dong Li & Nan-jing Huang, 2018. "Asymptotical Stability for a Class of Complex-Valued Projective Neural Network," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 261-270, April.
    4. Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zeng-bao & Zou, Yun-zhi & Huang, Nan-jing, 2016. "A class of global fractional-order projective dynamical systems involving set-valued perturbations," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 23-33.
    2. Xu, Jian & Chung, Kwok-Wai, 2009. "Dynamics for a class of nonlinear systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 28-49.
    3. M. Pappalardo & M. Passacantando, 2002. "Stability for Equilibrium Problems: From Variational Inequalities to Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 567-582, June.
    4. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    5. Ou, Ou, 2007. "Global robust exponential stability of delayed neural networks: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1742-1748.
    6. Diogo Pinheiro & Alberto A. Pinto & S. Z. Xanthopoulos & A. N. Yannacopoulos, 2011. "A projected gradient dynamical system modeling the dynamics of bargaining," CEMAPRE Working Papers 1101, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
    7. Cui, Shihua & Zhao, Tao & Guo, Jie, 2009. "Global robust exponential stability for interval neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1567-1576.
    8. Jin-dong Li & Nan-jing Huang, 2018. "Asymptotical Stability for a Class of Complex-Valued Projective Neural Network," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 261-270, April.
    9. Liu, Xiaolan & Zhou, Mi, 2016. "A one-layer recurrent neural network for non-smooth convex optimization subject to linear inequality constraints," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 39-46.
    10. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    11. He, Yong & Wang, Qing-Guo & Zheng, Wei-Xing, 2005. "Global robust stability for delayed neural networks with polytopic type uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1349-1354.
    12. Li, Chuandong & Chen, Jinyu & Huang, Tingwen, 2007. "A new criterion for global robust stability of interval neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 561-570.
    13. Zhao, Hongyong & Ding, Nan & Chen, Ling, 2009. "Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1653-1659.
    14. Qiu, Jiqing & Yang, Hongjiu & Zhang, Jinhui & Gao, Zhifeng, 2009. "New robust stability criteria for uncertain neural networks with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 579-585.
    15. Y. S. Xia, 2004. "Further Results on Global Convergence and Stability of Globally Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(3), pages 627-649, September.
    16. Yucel, Eylem & Arik, Sabri, 2009. "Novel results for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1604-1614.
    17. Sun, Yeong-Jeu & Gau, Ruey-Shyan & Hsieh, Jer-Guang, 2009. "Simple criteria for sector root clustering of uncertain systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 65-71.
    18. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    19. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    20. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:35:y:2008:i:4:p:718-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.