IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v25y2005i2p357-360.html
   My bibliography  Save this article

A note on the robust stability of neural networks with time delay

Author

Listed:
  • Zhang, Hongbin
  • Li, Chunguang
  • Liao, Xiaofeng

Abstract

The robust stability of neural networks with time-varying delay and time-varying parametric uncertainties is considered. The stability condition is given in terms of linear matrix inequality (LMI). Numerical example is presented to demonstrate the effectiveness of our theoretical results.

Suggested Citation

  • Zhang, Hongbin & Li, Chunguang & Liao, Xiaofeng, 2005. "A note on the robust stability of neural networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 357-360.
  • Handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:357-360
    DOI: 10.1016/j.chaos.2004.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904007283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yeong-Jeu & Gau, Ruey-Shyan & Hsieh, Jer-Guang, 2009. "Simple criteria for sector root clustering of uncertain systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 65-71.
    2. Huang, He & Feng, Gang, 2007. "Delay-dependent stability for uncertain stochastic neural networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 93-103.
    3. Sun, Yeong-Jeu, 2007. "Stability criterion for a class of descriptor systems with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 986-993.
    4. Xu, Jian & Chung, Kwok-Wai, 2009. "Dynamics for a class of nonlinear systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 28-49.
    5. Qiu, Jiqing & Yang, Hongjiu & Zhang, Jinhui & Gao, Zhifeng, 2009. "New robust stability criteria for uncertain neural networks with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 579-585.
    6. Syed Ali, M. & Balasubramaniam, P., 2009. "Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2191-2199.
    7. Ding, Ke & Huang, Nan-Jing, 2008. "A new class of interval projection neural networks for solving interval quadratic program," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 718-725.
    8. Qiu, Jiqing & Zhang, Jinhui & Wang, Jianfei & Xia, Yuanqing & Shi, Peng, 2008. "A new global robust stability criteria for uncertain neural networks with fast time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 360-368.
    9. Sun, Yeong-Jeu, 2007. "Duality between observation and output feedback for linear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 879-884.
    10. Cui, Shihua & Zhao, Tao & Guo, Jie, 2009. "Global robust exponential stability for interval neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1567-1576.
    11. Li, Chuandong & Chen, Jinyu & Huang, Tingwen, 2007. "A new criterion for global robust stability of interval neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 561-570.
    12. Suntonsinsoungvon, E. & Udpin, S., 2020. "Exponential stability of discrete-time uncertain neural networks with multiple time-varying leakage delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 233-245.
    13. Yucel, Eylem & Arik, Sabri, 2009. "Novel results for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1604-1614.
    14. He, Yong & Wang, Qing-Guo & Zheng, Wei-Xing, 2005. "Global robust stability for delayed neural networks with polytopic type uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1349-1354.
    15. Liu, Xiwei & Chen, Tianping, 2008. "Robust μ -stability for uncertain stochastic neural networks with unbounded time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2952-2962.
    16. Xiong, Wenjun & Ma, Deyi & Liang, Jinling, 2009. "Robust convergence of Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1176-1184.
    17. Ou, Ou, 2007. "Global robust exponential stability of delayed neural networks: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1742-1748.
    18. Zhao, Hongyong & Ding, Nan & Chen, Ling, 2009. "Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1653-1659.
    19. Sun, Yeong-Jeu, 2009. "Stability criteria for a class of differential inclusion systems with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2386-2391.
    20. Liu, Hailin & Chen, Guohua, 2007. "Delay-dependent stability for neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 171-177.
    21. Feng, Wei & Yang, Simon X. & Fu, Wei & Wu, Haixia, 2009. "Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 414-424.
    22. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    23. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:357-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.