IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2394-2398.html
   My bibliography  Save this article

Derivation of the Euler characteristic and the curvature of Cantorian-fractal spacetime using Nash Euclidean embedding and the universal Menger sponge

Author

Listed:
  • El Naschie, M.S.

Abstract

The present work gives an analytical derivation of the curvature K of fractal spacetime at the point of total unification of all fundamental forces which is marked by an inverse coupling constant equal α¯gs=26.18033989. To do this we need to first find the exact dimensionality of spacetime. This turned out to be n=4 for the topological dimension and ∼〈n〉=4+ϕ3=4.236067977 for the intrinsic Hausdorff dimension. Second we need to find the Euler characteristic of our fractal spacetime manifold. Since E-infinity Cantorian spacetime is accurately modelled by a fuzzy K3 Kähler manifold, we just need to extend the well known value χ=24 of a crisp K3 to the case of a fuzzy K3. This leads then to χ(fuzzy)=26+k=α¯gs. The final quite surprising result is that at the point of unification of our resolution dependent fractal-Cantorian spacetime manifold we encounter a Coincidencia Egregreium, namelyK=χ=D=α¯gs=26+k=26.18033989.Finally we look for some indirect experimental evidence for the correctness of our result using the COBE measurement in conjunction with Nash embedding of the universal Menger sponge.

Suggested Citation

  • El Naschie, M.S., 2009. "Derivation of the Euler characteristic and the curvature of Cantorian-fractal spacetime using Nash Euclidean embedding and the universal Menger sponge," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2394-2398.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2394-2398
    DOI: 10.1016/j.chaos.2008.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    2. El Naschie, M.S., 2009. "Curvature, Lagrangian and holonomy of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2163-2167.
    3. Elokaby, Ayman, 2009. "Knot wormholes and the dimensional invariant of exceptional Lie groups and Stein space hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1616-1618.
    4. El Naschie, M.S., 2008. "Transfinite harmonization by taking the dissonance out of the quantum field symphony," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 781-786.
    5. El Naschie, M.S., 2008. "An energy balance Eigenvalue equation for determining super strings dimensional hierarchy and coupling constants," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1283-1285.
    6. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    7. El Naschie, M.S., 2009. "Yang–Mills action as an eigenvalue problem in the theory of elasticity and some measure theoretical interpretation of ‘tHooft’s instanton," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1854-1856.
    8. El Naschie, M.S., 2009. "Kac–Moody exceptional E12 from simplictic tiling," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1569-1571.
    9. Munroe, Ray, 2009. "Symplectic tiling, hypercolour and hyperflavor E12," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2135-2138.
    10. Munroe, Ray, 2009. "The MSSM, E8, Hyperflavor E12 and E∞ TOE’s compared and contrasted," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1557-1560.
    11. El Naschie, M.S., 2008. "Quantum golden field theory – Ten theorems and various conjectures," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1121-1125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2009. "On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2725-2732.
    2. El Naschie, M.S., 2009. "On the Witten–Duff five Branes model together with knots theory and E8E8 super strings in a single fractal spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2018-2021.
    3. El Naschie, M.S., 2009. "The theory of Cantorian spacetime and high energy particle physics (an informal review)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2635-2646.
    4. El Naschie, M.S., 2009. "Curvature, Lagrangian and holonomy of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2163-2167.
    5. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    6. Malinowski, Leonard J., 2009. "Golden mean energy equals highest atomic electron orbital energy," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3130-3131.
    7. Elokaby, A., 2009. "On the deep connection between instantons and string states encoder in Klein’s modular space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 303-305.
    8. El Naschie, M.S., 2009. "Higgs mechanism, quarks confinement and black holes as a Cantorian spacetime phase transition scenario," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 869-874.
    9. El Naschie, M.S., 2009. "The crystallographic space groups and Heterotic string theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2282-2284.
    10. Chen, Qingjiang & Liu, Baocang & Cao, Huaixin, 2009. "Construction of a sort of multiple pseudoframes for subspaces with filter banks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 801-808.
    11. Malinowski, Leonard J., 2009. "Electronic golden structure of the periodic chart," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1396-1405.
    12. El Naschie, M.S., 2008. "An outline for a quantum golden field theory," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 317-323.
    13. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    14. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    15. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    16. El Naschie, M.S., 2008. "Quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 6-8.
    17. Liang, Y.S. & Su, W.Y., 2007. "The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 682-692.
    18. El Naschie, M.S., 2008. "The fundamental algebraic equations of the constants of nature," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 320-322.
    19. El Naschie, M.S., 2008. "Quarks confinement via Kaluza–Klein theory as a topological property of quantum classical spacetime phase transition," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 825-829.
    20. Wu, Yahao & Wang, Xiao-Tian & Wu, Min, 2009. "Fractional-moment CAPM with loss aversion," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1406-1414.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2394-2398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.