IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p1854-1856.html
   My bibliography  Save this article

Yang–Mills action as an eigenvalue problem in the theory of elasticity and some measure theoretical interpretation of ‘tHooft’s instanton

Author

Listed:
  • El Naschie, M.S.

Abstract

Theory of elasticity is a highly mathematical, rigorously derived and experimentally verified classical field. It is the basis of all applied mechanical and engineering material sciences.

Suggested Citation

  • El Naschie, M.S., 2009. "Yang–Mills action as an eigenvalue problem in the theory of elasticity and some measure theoretical interpretation of ‘tHooft’s instanton," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1854-1856.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1854-1856
    DOI: 10.1016/j.chaos.2008.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2008. "Yang–Mills instanton via exceptional Lie symmetry groups and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 925-927.
    2. El Naschie, M.S., 2009. "E-eight exceptional Lie groups, Fibonacci lattices and the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1340-1343.
    3. El Naschie, M.S., 2008. "Eliminating gauge anomalies via a “point-less” fractal Yang–Mills theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1332-1335.
    4. El Naschie, M.S., 2008. "Quasi exceptional E12 Lie symmetry group with 685 dimensions, KAC-Moody algebra and E-infinity Cantorian spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 990-992.
    5. El Naschie, M.S., 2008. "Quantum golden field theory – Ten theorems and various conjectures," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1121-1125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Naschie, M.S., 2009. "Derivation of the Euler characteristic and the curvature of Cantorian-fractal spacetime using Nash Euclidean embedding and the universal Menger sponge," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2394-2398.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    2. El Naschie, M.S., 2009. "The theory of Cantorian spacetime and high energy particle physics (an informal review)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2635-2646.
    3. El Naschie, M.S., 2009. "On the Witten–Duff five Branes model together with knots theory and E8E8 super strings in a single fractal spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2018-2021.
    4. El Naschie, M.S., 2009. "On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2725-2732.
    5. El Naschie, M.S., 2009. "Knots and exceptional Lie groups as building blocks of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1799-1803.
    6. El Naschie, M.S., 2008. "Anomalies free E-infinity from von Neumann’s continuous geometry," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1318-1322.
    7. Marek-Crnjac, L., 2009. "Partially ordered sets, transfinite topology and the dimension of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1796-1799.
    8. Li, Dengfeng & Wu, Guochang, 2009. "Construction of a class of Daubechies type wavelet bases," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 620-625.
    9. Marek-Crnjac, L. & Iovane, G. & Nada, S.I. & Zhong, Ting, 2009. "The mathematical theory of finite and infinite dimensional topological spaces and its relevance to quantum gravity," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1974-1979.
    10. El Naschie, M.S., 2009. "Curvature, Lagrangian and holonomy of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2163-2167.
    11. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    12. Elokaby, A., 2009. "On the deep connection between instantons and string states encoder in Klein’s modular space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 303-305.
    13. El Naschie, M.S., 2009. "Higgs mechanism, quarks confinement and black holes as a Cantorian spacetime phase transition scenario," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 869-874.
    14. de Souza, Jeferson & Duarte Queirós, Sílvio M., 2009. "Effective multifractal features of high-frequency price fluctuations time series and ℓ-variability diagrams," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2512-2521.
    15. Ye, Wang-Chuan & Li, Biao, 2009. "Finite symmetry transformation groups and exact solutions of the cylindrical Korteweg-de Vries equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2623-2628.
    16. El Naschie, M.S., 2008. "Eliminating gauge anomalies via a “point-less” fractal Yang–Mills theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1332-1335.
    17. El Naschie, M.S., 2009. "The crystallographic space groups and Heterotic string theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2282-2284.
    18. El Naschie, M.S., 2008. "On the phase transition to quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 332-333.
    19. Chen, Qingjiang & Liu, Baocang & Cao, Huaixin, 2009. "Construction of a sort of multiple pseudoframes for subspaces with filter banks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 801-808.
    20. Rani, Mamta & Agarwal, Rashi, 2009. "Generation of fractals from complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 447-452.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1854-1856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.