IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2387-2393.html
   My bibliography  Save this article

Novel stability criteria for uncertain delayed Cohen–Grossberg neural networks using discretized Lyapunov functional

Author

Listed:
  • Souza, Fernando O.
  • Palhares, Reinaldo M.
  • Ekel, Petr Ya.

Abstract

This paper deals with the stability analysis of delayed uncertain Cohen–Grossberg neural networks (CGNN). The proposed methodology consists in obtaining new robust stability criteria formulated as linear matrix inequalities (LMIs) via the Lyapunov–Krasovskii theory. Particularly one stability criterion is derived from the selection of a parameter-dependent Lyapunov–Krasovskii functional, which allied with the Gu’s discretization technique and a simple strategy that decouples the system matrices from the functional matrices, assures a less conservative stability condition. Two computer simulations are presented to support the improved theoretical results.

Suggested Citation

  • Souza, Fernando O. & Palhares, Reinaldo M. & Ekel, Petr Ya., 2009. "Novel stability criteria for uncertain delayed Cohen–Grossberg neural networks using discretized Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2387-2393.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2387-2393
    DOI: 10.1016/j.chaos.2008.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhang & Zhao, Donghua & Ruan, Jiong, 2007. "Dynamic analysis of high-order Cohen–Grossberg neural networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1538-1546.
    2. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2005. "Delay-dependent exponential stability of cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1363-1369.
    3. Huang, Tingwen & Li, Chuandong & Chen, Goong, 2007. "Stability of Cohen–Grossberg neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 992-996.
    4. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of delayed Cohen–Grossberg neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 872-877.
    5. Xiong, WeiLi & Xu, BaoGuo, 2008. "Some criteria for robust stability of Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1357-1365.
    6. Souza, Fernando O. & Palhares, Reinaldo M. & Ekel, Petr Ya., 2009. "Improved asymptotic stability analysis for uncertain delayed state neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 240-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalpana, M. & Balasubramaniam, P. & Ratnavelu, K., 2015. "Direct delay decomposition approach to synchronization of chaotic fuzzy cellular neural networks with discrete, unbounded distributed delays and Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 291-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Weirui & Yan, Anzhi, 2009. "Stability analysis of neural networks with both variable and unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 697-707.
    2. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    3. Ping, Zhao Wu & Lu, Jun Guo, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 164-174.
    4. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    5. Zhou, Jun & Zhao, Weirui & Lv, Xiaohong & Zhu, Huaping, 2011. "Stability analysis of almost periodic solutions for delayed neural networks without global Lipschitz activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2440-2455.
    6. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2009. "Exponential stability for nonautonomous neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1152-1157.
    8. Sun, Meng & Zhuang, Guangming & Xia, Jianwei & Wang, Yanqian & Chen, Guoliang, 2022. "Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Wang, Xin & Zhuang, Guangming & Chen, Guoliang & Ma, Qian & Lu, Junwei, 2022. "Asynchronous mixed H∞ and passive control for fuzzy singular delayed Markovian jump system via hidden Markovian model mechanism," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    10. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    11. Li, Chun-Hsien & Yang, Suh-Yuh, 2009. "Global attractivity in delayed Cohen–Grossberg neural network models," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1975-1987.
    12. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    13. Lou, Xu Yang & Cui, Bao Tong, 2006. "Global asymptotic stability of delay BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 1023-1031.
    14. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2007. "Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 997-1005.
    15. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    16. Li, Dong & Yang, Dan & Wang, Hui & Zhang, Xiaohong & Wang, Shilong, 2009. "Asymptotical stability of multi-delayed cellular neural networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 218-224.
    17. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    18. Lijing Dong & Senchun Chai & Baihai Zhang & Sing Kiong Nguang, 2016. "Sliding mode control for multi-agent systems under a time-varying topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(9), pages 2193-2200, July.
    19. Kalpana, M. & Balasubramaniam, P. & Ratnavelu, K., 2015. "Direct delay decomposition approach to synchronization of chaotic fuzzy cellular neural networks with discrete, unbounded distributed delays and Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 291-304.
    20. Lien, Chang-Hua & Chung, Long-Yeu, 2007. "Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1213-1219.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2387-2393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.