IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i11p2440-2455.html
   My bibliography  Save this article

Stability analysis of almost periodic solutions for delayed neural networks without global Lipschitz activation functions

Author

Listed:
  • Zhou, Jun
  • Zhao, Weirui
  • Lv, Xiaohong
  • Zhu, Huaping

Abstract

In this paper, the existence and local exponential stability of the almost periodic solutions for recurrent neural networks with mixed delays have been investigated. By applying Dini derivative and introducing many real parameters, and estimating the upper bound of solutions of the system, a series of new and useful criteria on the existence and local exponential stability of almost periodic for general delayed neural networks without global Lipschitz activation functions have been derived. Those results obtained in this paper extend and generalize the corresponding results existing in the previous literature. Two examples and numerical simulations are given to illustrate our theory.

Suggested Citation

  • Zhou, Jun & Zhao, Weirui & Lv, Xiaohong & Zhu, Huaping, 2011. "Stability analysis of almost periodic solutions for delayed neural networks without global Lipschitz activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2440-2455.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:11:p:2440-2455
    DOI: 10.1016/j.matcom.2011.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475411000887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lien, Chang-Hua & Chung, Long-Yeu, 2007. "Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1213-1219.
    2. Xia, Yonghui & Cao, Jinde & Lin, Muren, 2007. "New results on the existence and uniqueness of almost periodic solution for BAM neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 928-936.
    3. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    4. Liu, Bingwen & Huang, Lihong, 2007. "Existence and exponential stability of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 95-103.
    5. Chen, Zhang & Zhao, Donghua & Ruan, Jiong, 2007. "Dynamic analysis of high-order Cohen–Grossberg neural networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1538-1546.
    6. Huang, Tingwen & Li, Chuandong & Chen, Goong, 2007. "Stability of Cohen–Grossberg neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 992-996.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Tiejun & Wang, Min & Li, Chen, 2015. "Almost periodic solution for multidirectional associative memory neural network with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 107(C), pages 52-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Weirui & Yan, Anzhi, 2009. "Stability analysis of neural networks with both variable and unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 697-707.
    2. Ping, Zhao Wu & Lu, Jun Guo, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 164-174.
    3. Zhao, Weirui, 2009. "On existence and global exponential stability of periodic solution of two-neuron networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1100-1105.
    4. Zhang, Qianhong & Luo, Wei, 2009. "Global exponential stability of fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2239-2245.
    5. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    6. Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
    7. Souza, Fernando O. & Palhares, Reinaldo M. & Ekel, Petr Ya., 2009. "Novel stability criteria for uncertain delayed Cohen–Grossberg neural networks using discretized Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2387-2393.
    8. Zhao, Weirui & Zhang, Huanshui, 2009. "New results of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 831-838.
    9. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    10. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Chen, Hao & Zhong, Shouming & Shao, Jinliang, 2015. "Exponential stability criterion for interval neural networks with discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 121-130.
    12. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    13. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Existence and globally exponential stability of equilibrium for BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 588-597.
    14. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    15. Huang, Zhenkun & Xia, Yonghui, 2009. "Exponential periodic attractor of impulsive BAM networks with finite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 373-384.
    16. Sun, Yeong-Jeu, 2009. "Global exponential stability criterion for uncertain discrete-time cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2022-2024.
    17. Tian, Junkang & Xu, Dongsheng, 2009. "New asymptotic stability criteria for neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1916-1922.
    18. Senan, Sibel & Arik, Sabri, 2009. "New results for global robust stability of bidirectional associative memory neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2106-2114.
    19. Zhang, Huiying & Xia, Yonghui, 2008. "Existence and exponential stability of almost periodic solution for Hopfield-type neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1076-1082.
    20. Zhang, Yutian & Luo, Qi, 2012. "Novel stability criteria for impulsive delayed reaction–diffusion Cohen–Grossberg neural networks via Hardy–Poincarè inequality," Chaos, Solitons & Fractals, Elsevier, vol. 45(8), pages 1033-1040.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:11:p:2440-2455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.