IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i1p497-504.html
   My bibliography  Save this article

k-Fibonacci sequences modulo m

Author

Listed:
  • Falcon, Sergio
  • Plaza, Ángel

Abstract

We study here the period-length of the k-Fibonacci sequences taken modulo m. The period of such cyclic sequences is know as Pisano period, and the period-length is denoted by πk(m). It is proved that for every odd number k, πk(k2+4)=4(k2+4).

Suggested Citation

  • Falcon, Sergio & Plaza, Ángel, 2009. "k-Fibonacci sequences modulo m," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 497-504.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:497-504
    DOI: 10.1016/j.chaos.2008.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908000726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stakhov, Alexey, 2007. "The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 315-334.
    2. El Naschie, M.S., 2005. "Non-Euclidean spacetime structure and the two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 1-6.
    3. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    4. Naschie, M.S.El, 2005. "Deriving the essential features of the standard model from the general theory of relativity," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 941-946.
    5. El Naschie, M.S., 2005. "Stability Analysis of the two-slit experiment with quantum particles," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 291-294.
    6. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    7. Stakhov, A.P., 2005. "The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 263-289.
    8. El Naschie, M.S., 2005. "On the cohomology and instantons number in E-infinity Cantorian spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 13-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deveci, Ömür & Hulku, Sakine & Shannon, Anthony G., 2021. "On the co-complex-type k-Fibonacci numbers," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
    2. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    3. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    4. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    5. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    6. Falcón, Sergio & Plaza, Ángel, 2008. "The k-Fibonacci hyperbolic functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 409-420.
    7. Falcón, Sergio & Plaza, Ángel, 2009. "On k-Fibonacci sequences and polynomials and their derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1005-1019.
    8. Natalia Bednarz, 2021. "On ( k , p )-Fibonacci Numbers," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    9. Cristina E. Hretcanu & Mircea Crasmareanu, 2023. "The ( α , p )-Golden Metric Manifolds and Their Submanifolds," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
    10. El Naschie, Mohamed Saladin, 2006. "The idealized quantum two-slit gedanken experiment revisited—Criticism and reinterpretation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 843-849.
    11. Pavel Trojovský & Štěpán Hubálovský, 2020. "Some Diophantine Problems Related to k -Fibonacci Numbers," Mathematics, MDPI, vol. 8(7), pages 1-10, June.
    12. Flaut, Cristina & Savin, Diana, 2018. "Some special number sequences obtained from a difference equation of degree three," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 67-71.
    13. Nalli, Ayse & Haukkanen, Pentti, 2009. "On generalized Fibonacci and Lucas polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3179-3186.
    14. Kilic, E. & Stakhov, A.P., 2009. "On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2210-2221.
    15. Flaut, Cristina & Shpakivskyi, Vitalii & Vlad, Elena, 2017. "Some remarks regarding h(x) – Fibonacci polynomials in an arbitrary algebra," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 32-35.
    16. Flaut, Cristina & Savin, Diana, 2019. "Some remarks regarding l-elements defined in algebras obtained by the Cayley–Dickson process," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 112-116.
    17. Falcon, Sergio, 2016. "The k–Fibonacci difference sequences," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 153-157.
    18. Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
    19. Aydın, Fügen Torunbalcı, 2018. "Dual-complex k-Fibonacci numbers," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 1-6.
    20. Bijendra Singh & Kiran Sisodiya & Farooq Ahmad, 2014. "On the Products of -Fibonacci Numbers and -Lucas Numbers," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-4, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:497-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.