IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i1p103-112.html
   My bibliography  Save this article

Harvesting policy for a delayed stage-structured Holling II predator–prey model with impulsive stocking prey

Author

Listed:
  • Jiao, Jianjun
  • Meng, Xinzhu
  • Chen, Lansun

Abstract

A predator–prey model with a stage structure for the predator, which improves the assumption that each individual predator has the same ability to capture prey, is proposed by Wang et al. [Wang W, Mulone G, Salemi F, Salone V. Permanence and stability of a stage-structured predator–prey model. J Math Anal Appl 2001;262:499–528]. It is assumed that immature individuals and mature individuals of the predator are divided by a fixed age and that immature predators do not have the ability to attack prey. We do economic management behavior for Wang model [Wang et al., 2001] by continuous harvesting on predator and impulsive stocking on prey. Then, a delayed stage-structured Holling type II predator–prey model with impulsive stocking prey and continuous harvesting predator is established. It is also assumed that the predating products of the predator is only to increase its bearing ability. We obtain the sufficient conditions of the global attractivity of predator-extinction boundary periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Further, the numerical analysis is also inserted to illuminate the dynamics of the system.

Suggested Citation

  • Jiao, Jianjun & Meng, Xinzhu & Chen, Lansun, 2009. "Harvesting policy for a delayed stage-structured Holling II predator–prey model with impulsive stocking prey," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 103-112.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:103-112
    DOI: 10.1016/j.chaos.2007.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907009496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gakkhar, Sunita & Singh, Brahampal, 2007. "The dynamics of a food web consisting of two preys and a harvesting predator," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1346-1356.
    2. Liu, Zhijun & Tan, Ronghua, 2007. "Impulsive harvesting and stocking in a Monod–Haldane functional response predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 454-464.
    3. Liu, Bing & Teng, Zhidong & Liu, Wanbo, 2007. "Dynamic behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 356-370.
    4. Zhang, Yujuan & Xiu, Zhilong & Chen, Lansun, 2005. "Dynamic complexity of a two-prey one-predator system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 131-139.
    5. Song, Xinyu & Li, Yongfeng, 2007. "Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 463-478.
    6. Wang, Fengyan & Zeng, Guangzhao, 2007. "Chaos in a Lotka–Volterra predator–prey system with periodically impulsive ratio-harvesting the prey and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1499-1512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiangmin & Shao, Yuanfu & Wang, Zhen & Luo, Mengzhuo & Fang, Xianjia & Ju, Zhixiang, 2016. "An impulsive two-stage predator–prey model with stage-structure and square root functional responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 91-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dong & Wang, Shilong & Zhang, Xiaohong & Yang, Dan, 2009. "Impulsive control of uncertain Lotka–Volterra predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1572-1577.
    2. Chen, Yiping & Liu, Zhijun, 2009. "Modelling and analysis of an impulsive SI model with Monod-Haldane functional response," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1698-1714.
    3. Guo, Hongjian & Chen, Lansun & Song, Xinyu, 2009. "Dynamic analysis of a kind of species control model concerning impulsively releasing pathogen and infective predator," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1326-1336.
    4. Wang, Weiming & Wang, Xiaoqin & Lin, Yezhi, 2008. "Complicated dynamics of a predator–prey system with Watt-type functional response and impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1427-1441.
    5. Wang, Weiming & Wang, Hailing & Li, Zhenqing, 2008. "Chaotic behavior of a three-species Beddington-type system with impulsive perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 438-443.
    6. Tian, Yuan & Li, Chunxue & Liu, Jing, 2023. "Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Wang, Xiaoqin & Wang, Weiming & Lin, Xiaolin, 2009. "Dynamics of a periodic Watt-type predator–prey system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1270-1282.
    8. Xinmiao An & Xiaomin Wang & Boyu Zhang, 2020. "Bimatrix Replicator Dynamics with Periodic Impulses," Dynamic Games and Applications, Springer, vol. 10(3), pages 676-694, September.
    9. Wang, Weiming & Wang, Hailing & Li, Zhenqing, 2007. "The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1772-1785.
    10. Li, Zhenqing & Wang, Weiming & Wang, Hailing, 2006. "The dynamics of a Beddington-type system with impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1229-1239.
    11. Wang, Xiaoqin & Wang, Weiming & Lin, Yezhi & Lin, Xiaolin, 2009. "The dynamical complexity of an impulsive Watt-type prey–predator system," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 731-744.
    12. Xingjie Wu & Wei Du & Genan Pan & Wentao Huang, 2013. "The dynamical behaviors of a Ivlev-type two-prey two-predator system with impulsive effect," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(1), pages 1-27, February.
    13. Alidousti, Javad & Ghafari, Elham, 2020. "Dynamic behavior of a fractional order prey-predator model with group defense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    14. Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
    15. Jana, Soovoojeet & Ghorai, Abhijit & Guria, Srabani & Kar, T.K., 2015. "Global dynamics of a predator, weaker prey and stronger prey system," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 235-248.
    16. Liu, Bing & Teng, Zhidong & Liu, Wanbo, 2007. "Dynamic behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 356-370.
    17. Sahoo, Banshidhar & Poria, Swarup, 2014. "The chaos and control of a food chain model supplying additional food to top-predator," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 52-64.
    18. Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
    19. Agarwal, Ravi P. & Özbekler, Abdullah, 2016. "Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 216-225.
    20. Alsakaji, Hebatallah J. & Kundu, Soumen & Rihan, Fathalla A., 2021. "Delay differential model of one-predator two-prey system with Monod-Haldane and holling type II functional responses," Applied Mathematics and Computation, Elsevier, vol. 397(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:103-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.