IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v10y2020i3d10.1007_s13235-019-00344-w.html
   My bibliography  Save this article

Bimatrix Replicator Dynamics with Periodic Impulses

Author

Listed:
  • Xinmiao An

    (Beijing Normal University)

  • Xiaomin Wang

    (Beijing Normal University)

  • Boyu Zhang

    (Beijing Normal University)

Abstract

This paper investigates the bimatrix replicator dynamics with periodic impulses. In biological system, impulsive perturbations may due to the occurrence of an unfavorable physical environment, or due to the seasonal life history effects in the physiological and reproductive mechanisms of the population. We show that impulsive perturbations can lead to complicated dynamical behaviors. On the one hand, the system can have multiple $$\tau $$ τ -periodic solutions, where the lower bound of the number of solutions is increasing linearly in the impulsive period $$\tau $$ τ . On the other hand, for shorter impulsive period, we provide a differential approximation for the impulsive dynamical system. By analyzing the resulting differential dynamics, we show that the interior equilibrium (which corresponds to a $$\tau $$ τ -periodic solution) must be globally stable if it exists. Furthermore, when the impulsive effect is weak, all interior trajectories of the impulsive dynamics evolve to a small neighborhood of the interior equilibrium of the bimatrix replicator dynamics. In summary, longer impulsive period causes an increase in the complexity of the evolutionary process and shorter period promotes evolutionary stability of the interior equilibrium where multiple strategies can coexist.

Suggested Citation

  • Xinmiao An & Xiaomin Wang & Boyu Zhang, 2020. "Bimatrix Replicator Dynamics with Periodic Impulses," Dynamic Games and Applications, Springer, vol. 10(3), pages 676-694, September.
  • Handle: RePEc:spr:dyngam:v:10:y:2020:i:3:d:10.1007_s13235-019-00344-w
    DOI: 10.1007/s13235-019-00344-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-019-00344-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-019-00344-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralf Korn, 1999. "Some applications of impulse control in mathematical finance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 493-518, December.
    2. Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, April.
    3. Min Zhao & Yanzhen Wang & Lansun Chen, 2012. "Dynamic Analysis of a Predator-Prey (Pest) Model with Disease in Prey and Involving an Impulsive Control Strategy," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-18, August.
    4. Zhang, Yujuan & Xiu, Zhilong & Chen, Lansun, 2005. "Dynamic complexity of a two-prey one-predator system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 131-139.
    5. Bo-Yu Zhang & Ross Cressman & Yi Tao, 2010. "Cooperation and Stability through Periodic Impulses," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-7, March.
    6. Sun, Mingjing & Liu, Yinli & Liu, Sujuan & Hu, Zuoliang & Chen, Lansun, 2016. "A novel method for analyzing the stability of periodic solution of impulsive state feedback model," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 425-434.
    7. Wang, Weiming & Wang, Hailing & Li, Zhenqing, 2007. "The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1772-1785.
    8. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilaria Colivicchi & Gianluca Iannucci, 2023. "The Environmental Responsibility of Firms and Insurance Coverage in an Evolutionary Game," Dynamic Games and Applications, Springer, vol. 13(3), pages 801-818, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Weiming & Wang, Xiaoqin & Lin, Yezhi, 2008. "Complicated dynamics of a predator–prey system with Watt-type functional response and impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1427-1441.
    2. Wang, Weiming & Wang, Hailing & Li, Zhenqing, 2008. "Chaotic behavior of a three-species Beddington-type system with impulsive perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 438-443.
    3. Wang, Xiaoqin & Wang, Weiming & Lin, Yezhi & Lin, Xiaolin, 2009. "The dynamical complexity of an impulsive Watt-type prey–predator system," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 731-744.
    4. Wang, Hailing & Wang, Weiming, 2008. "The dynamical complexity of a Ivlev-type prey–predator system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1168-1176.
    5. Wang, Xiaoqin & Wang, Weiming & Lin, Xiaolin, 2009. "Dynamics of a two-prey one-predator system with Watt-type functional response and impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2392-2404.
    6. Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
    7. Szabó, György & Borsos, István & Szombati, Edit, 2019. "Games, graphs and Kirchhoff laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 416-423.
    8. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    9. Jukka Isohätälä & Alistair Milne & Donald Robertson, 2020. "The Net Worth Trap: Investment and Output Dynamics in the Presence of Financing Constraints," Mathematics, MDPI, vol. 8(8), pages 1-32, August.
    10. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    11. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    12. Sandholm, William H. & Izquierdo, Segismundo S. & Izquierdo, Luis R., 2019. "Best experienced payoff dynamics and cooperation in the Centipede game," Theoretical Economics, Econometric Society, vol. 14(4), November.
    13. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    14. Anirban Ghatak & K. Mallikarjuna Rao & A. Shaiju, 2012. "Evolutionary Stability Against Multiple Mutations," Dynamic Games and Applications, Springer, vol. 2(4), pages 376-384, December.
    15. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    16. Lenzo, Justin & Sarver, Todd, 2006. "Correlated equilibrium in evolutionary models with subpopulations," Games and Economic Behavior, Elsevier, vol. 56(2), pages 271-284, August.
    17. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    18. Patrick Kane & Kevin J S Zollman, 2015. "An Evolutionary Comparison of the Handicap Principle and Hybrid Equilibrium Theories of Signaling," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-14, September.
    19. Aradhana Narang & A. J. Shaiju, 2019. "Evolutionary Stability of Polymorphic Profiles in Asymmetric Games," Dynamic Games and Applications, Springer, vol. 9(4), pages 1126-1142, December.
    20. Baccarin, Stefano, 2009. "Optimal impulse control for a multidimensional cash management system with generalized cost functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 198-206, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:10:y:2020:i:3:d:10.1007_s13235-019-00344-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.