IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i2p975-980.html
   My bibliography  Save this article

Feigenbaum scenario in the dynamics of a metal–oxide semiconductor heterostructure under harmonic perturbation. Golden mean criticality

Author

Listed:
  • Cristescu, C.P.
  • Mereu, B.
  • Stan, Cristina
  • Agop, M.

Abstract

Experimental investigations and theoretical analysis on the dynamics of a metal–oxide semiconductor heterostructure used as nonlinear capacity in a series RLC electric circuit are presented. A harmonic voltage perturbation can induce various nonlinear behaviours, particularly evolution to chaos by period doubling and torus destabilization. In this work we focus on the change in dynamics induced by a sinusoidal driving with constant frequency and variable amplitude. Theoretical treatment based on the microscopic mechanisms involved led us to a dynamic system with a piecewise behaviour. Consequently, a model consisting of a nonlinear oscillator described by a piecewise second order ordinary differential equation is proposed. This kind of treatment is required by the asymmetry in the behaviour of the metal–oxide semiconductor with respect to the polarization of the perturbing voltage. The dynamics of the theoretical model is in good agreement with the experimental results. A connection with El Naschie’s E-infinity space-time is established based on the interpretation of our experimental results as evidence of the importance of the golden mean criticality in the microscopic world.

Suggested Citation

  • Cristescu, C.P. & Mereu, B. & Stan, Cristina & Agop, M., 2009. "Feigenbaum scenario in the dynamics of a metal–oxide semiconductor heterostructure under harmonic perturbation. Golden mean criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 975-980.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:2:p:975-980
    DOI: 10.1016/j.chaos.2007.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907006674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.08.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    2. Stan, Cristina & Cristescu, C.P. & Agop, M., 2007. "Golden mean relevance for chaos inhibition in a system of two coupled modified van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 1035-1040.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stan, Cristina & Cristescu, C.P. & Alexandroaei, D. & Agop, M., 2009. "Stochastic resonance and vibrational resonance in an excitable system: The golden mean barrier," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 727-734.
    2. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    3. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    4. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.
    5. Chen, Qingjiang & Huo, Ailian, 2009. "The research of a class of biorthogonal compactly supported vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 951-961.
    6. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.
    7. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    8. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Design and characterizations of a class of orthogonal multiple vector-valued wavelets with 4-scale," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 91-102.
    9. Alimohammady, Mohsen & Esmaeli, Abdolreza & Saadati, Reza, 2009. "Completeness results in probabilistic metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 765-769.
    10. de Souza, Jeferson & Duarte Queirós, Sílvio M., 2009. "Effective multifractal features of high-frequency price fluctuations time series and ℓ-variability diagrams," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2512-2521.
    11. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Construction and characterizations of orthogonal vector-valued multivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1835-1844.
    12. Khrennikov, Andrei Yu., 2009. "Gene expression from polynomial dynamics in the 2-adic information space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 341-347.
    13. Ekici, Erdal & Noiri, Takashi, 2009. "Decompositions of continuity, α-continuity and AB-continuity," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2055-2061.
    14. El Naschie, M.S., 2008. "Extended renormalizations group analysis for quantum gravity and Newton’s gravitational constant," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 425-431.
    15. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    16. Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
    17. Goldfain, Ervin, 2008. "Critical behavior in continuous dimension, ε∞ theory and particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 928-935.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:2:p:975-980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.