IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i5p2063-2075.html
   My bibliography  Save this article

Bifurcations of heterodimensional cycles with two saddle points

Author

Listed:
  • Geng, Fengjie
  • Zhu, Deming
  • Xu, Yancong

Abstract

The bifurcations of 2-point heterodimensional cycles are investigated in this paper. Under some generic conditions, we establish the existence of one homoclinic loop, one periodic orbit, two periodic orbits, one 2-fold periodic orbit, and the coexistence of one periodic orbit and heteroclinic loop. Some bifurcation patterns different to the case of non-heterodimensional heteroclinic cycles are revealed.

Suggested Citation

  • Geng, Fengjie & Zhu, Deming & Xu, Yancong, 2009. "Bifurcations of heterodimensional cycles with two saddle points," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2063-2075.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2063-2075
    DOI: 10.1016/j.chaos.2007.06.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan, 2005. "Limit cycle and bifurcation of nonlinear problems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 827-833.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Qiuying, 2009. "Non-resonance 3D homoclinic bifurcation with an inclination flip," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2597-2605.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    2. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    3. Wang, Shu-Qiang & He, Ji-Huan, 2008. "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 688-691.
    4. Lu, Qiuying, 2009. "Non-resonance 3D homoclinic bifurcation with an inclination flip," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2597-2605.
    5. Zeng, De-Qiang, 2009. "Nonlinear oscillator with discontinuity by the max–min approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2885-2889.
    6. Darvishi, M.T. & Khani, F., 2009. "Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2484-2490.
    7. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    8. Mei, Shu-Li & Du, Cheng-Jin & Zhang, Sen-Wen, 2008. "Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 536-542.
    9. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    10. Singh, Vimal, 2008. "Novel frequency-domain criterion for elimination of limit cycles in a class of digital filters with single saturation nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 178-183.
    11. Tao, Zhao-Ling, 2009. "Frequency–amplitude relationship of nonlinear oscillators by He’s parameter-expanding method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 642-645.
    12. Chun, Changbum, 2007. "Integration using He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1130-1134.
    13. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    14. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
    15. Singh, Vimal, 2007. "A new frequency-domain criterion for elimination of limit cycles in fixed-point state-space digital filters using saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 813-816.
    16. Batiha, B. & Noorani, M.S.M. & Hashim, I., 2008. "Application of variational iteration method to the generalized Burgers–Huxley equation," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 660-663.
    17. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
    18. Singh, Vimal, 2007. "Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1448-1453.
    19. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    20. Ghorbani, Asghar, 2009. "Beyond Adomian polynomials: He polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1486-1492.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2063-2075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.