IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i4p1448-1453.html
   My bibliography  Save this article

Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic

Author

Listed:
  • Singh, Vimal

Abstract

A criterion in the form of linear matrix inequality for the elimination of limit cycles in a class of state-space digital filters using saturation arithmetic is presented. The criterion is a modified form of a previously reported criterion.

Suggested Citation

  • Singh, Vimal, 2007. "Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1448-1453.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1448-1453
    DOI: 10.1016/j.chaos.2005.11.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905011616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan, 2005. "Limit cycle and bifurcation of nonlinear problems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 827-833.
    2. Wang, S. & Yu, P., 2005. "Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1317-1335.
    3. Adimy, Mostafa & Crauste, Fabien & Halanay, Andrei & Neamţu, Mihaela & Opriş, Dumitru, 2006. "Stability of limit cycles in a pluripotent stem cell dynamics model," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1091-1107.
    4. Yu, P. & Han, M., 2005. "Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 329-348.
    5. Ramos, J.I., 2006. "Piecewise-linearized methods for oscillators with limit cycles," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1229-1238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Vimal, 2008. "Suppression of limit cycles in second-order companion form digital filters with saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 677-681.
    2. Chen, Shyh-Feng, 2009. "Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1251-1257.
    3. Singh, Vimal, 2008. "Novel frequency-domain criterion for elimination of limit cycles in a class of digital filters with single saturation nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 178-183.
    4. Yuan, Li-Guo & Nie, Du-Xian & Fu, Xin-Chu, 2009. "Complex orbits in a second-order digital filter with sinusoidal response," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1660-1667.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Vimal, 2008. "Novel frequency-domain criterion for elimination of limit cycles in a class of digital filters with single saturation nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 178-183.
    2. Singh, Vimal, 2007. "A new frequency-domain criterion for elimination of limit cycles in fixed-point state-space digital filters using saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 813-816.
    3. Singh, Vimal, 2008. "Suppression of limit cycles in second-order companion form digital filters with saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 677-681.
    4. Wang, S. & Yu, P., 2006. "Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 606-621.
    5. Yu, P. & Han, M., 2007. "On limit cycles of the Liénard equation with Z2 symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 617-630.
    6. Giné, Jaume, 2007. "On some open problems in planar differential systems and Hilbert’s 16th problem," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1118-1134.
    7. Ting Huang & Jieping Gu & Yuting Ouyang & Wentao Huang, 2023. "Bifurcation of Limit Cycles and Center in 3D Cubic Systems with Z 3 -Equivariant Symmetry," Mathematics, MDPI, vol. 11(11), pages 1-22, June.
    8. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    9. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    10. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    11. Wang, Shu-Qiang & He, Ji-Huan, 2008. "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 688-691.
    12. Yu, P. & Han, M., 2006. "Limit cycles in generalized Liénard systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1048-1068.
    13. Lu, Qiuying, 2009. "Non-resonance 3D homoclinic bifurcation with an inclination flip," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2597-2605.
    14. Zeng, De-Qiang, 2009. "Nonlinear oscillator with discontinuity by the max–min approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2885-2889.
    15. Darvishi, M.T. & Khani, F., 2009. "Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2484-2490.
    16. Sun, Yeong-Jeu, 2009. "The existence of the exponentially stable limit cycle for a class of nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2357-2362.
    17. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    18. Mei, Shu-Li & Du, Cheng-Jin & Zhang, Sen-Wen, 2008. "Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 536-542.
    19. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    20. Tao, Zhao-Ling, 2009. "Frequency–amplitude relationship of nonlinear oscillators by He’s parameter-expanding method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 642-645.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1448-1453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.