Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2005.11.065
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- He, Ji-Huan, 2005. "Limit cycle and bifurcation of nonlinear problems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 827-833.
- Wang, S. & Yu, P., 2005. "Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1317-1335.
- Adimy, Mostafa & Crauste, Fabien & Halanay, Andrei & Neamţu, Mihaela & Opriş, Dumitru, 2006. "Stability of limit cycles in a pluripotent stem cell dynamics model," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1091-1107.
- Yu, P. & Han, M., 2005. "Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 329-348.
- Ramos, J.I., 2006. "Piecewise-linearized methods for oscillators with limit cycles," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1229-1238.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Singh, Vimal, 2008. "Suppression of limit cycles in second-order companion form digital filters with saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 677-681.
- Chen, Shyh-Feng, 2009. "Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1251-1257.
- Singh, Vimal, 2008. "Novel frequency-domain criterion for elimination of limit cycles in a class of digital filters with single saturation nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 178-183.
- Yuan, Li-Guo & Nie, Du-Xian & Fu, Xin-Chu, 2009. "Complex orbits in a second-order digital filter with sinusoidal response," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1660-1667.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Singh, Vimal, 2008. "Suppression of limit cycles in second-order companion form digital filters with saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 677-681.
- Singh, Vimal, 2008. "Novel frequency-domain criterion for elimination of limit cycles in a class of digital filters with single saturation nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 178-183.
- Singh, Vimal, 2007. "A new frequency-domain criterion for elimination of limit cycles in fixed-point state-space digital filters using saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 813-816.
- Giné, Jaume, 2007. "On some open problems in planar differential systems and Hilbert’s 16th problem," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1118-1134.
- Wang, S. & Yu, P., 2006. "Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 606-621.
- Yu, P. & Han, M., 2007. "On limit cycles of the Liénard equation with Z2 symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 617-630.
- Ting Huang & Jieping Gu & Yuting Ouyang & Wentao Huang, 2023. "Bifurcation of Limit Cycles and Center in 3D Cubic Systems with Z 3 -Equivariant Symmetry," Mathematics, MDPI, vol. 11(11), pages 1-22, June.
- Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
- Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
- Cui, Yan & Liu, Suhua & Tang, Jiashi & Meng, Yimin, 2009. "Amplitude control of limit cycles in Langford system," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 335-340.
- Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
- Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
- Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
- Wang, Shu-Qiang & He, Ji-Huan, 2008. "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 688-691.
- Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
- Ghorbani, Asghar, 2009. "Beyond Adomian polynomials: He polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1486-1492.
- Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
- Siddiqui, A.M. & Mahmood, R. & Ghori, Q.K., 2008. "Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 140-147.
- Yu, P. & Han, M., 2006. "Limit cycles in generalized Liénard systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1048-1068.
- Lu, Qiuying, 2009. "Non-resonance 3D homoclinic bifurcation with an inclination flip," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2597-2605.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1448-1453. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.