IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i5p2056-2062.html
   My bibliography  Save this article

Generalized synchronization of chaos based on suitable separation

Author

Listed:
  • Li, Guo-Hui

Abstract

In this Letter, generalized synchronization with a kind of function relationship between the states of drive and response chaotic systems is achieved. From matrix measure theory, some sufficient conditions for generalized synchronization are derived through suitable separation by decomposing the system as the linear part and the nonlinear one. Simulation results are provided for illustration and verification of the proposed method.

Suggested Citation

  • Li, Guo-Hui, 2009. "Generalized synchronization of chaos based on suitable separation," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2056-2062.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2056-2062
    DOI: 10.1016/j.chaos.2007.06.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Gang & Liu, Zengrong & Ma, Zhongjun, 2007. "Generalized synchronization of different dimensional chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 773-779.
    2. Wang, Yan-Wu & Guan, Zhi-Hong, 2006. "Generalized synchronization of continuous chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 97-101.
    3. Elabbasy, E.M. & Agiza, H.N. & El-Dessoky, M.M., 2005. "Global synchronization criterion and adaptive synchronization for new chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1299-1309.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    2. Jana, Debaldev & Pathak, Rachana & Agarwal, Manju, 2016. "On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 252-273.
    3. Xu, Yuhua & Zhou, Wuneng & Fang, Jian-an, 2009. "Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1305-1315.
    4. Zhao, Yang, 2009. "Synchronization of two coupled systems of J-J type using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3035-3041.
    5. Singh, Piyush Pratap & Singh, Jay Prakash & Roy, B.K., 2014. "Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 31-39.
    6. Martínez-Guerra, Rafael & Mata-Machuca, Juan L., 2014. "Generalized synchronization via the differential primitive element," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 848-857.
    7. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    8. Kuetche Mbe, E.S. & Fotsin, H.B. & Kengne, J. & Woafo, P., 2014. "Parameters estimation based adaptive Generalized Projective Synchronization (GPS) of chaotic Chua’s circuit with application to chaos communication by parametric modulation," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 27-37.
    9. Yu, Yongguang, 2007. "The synchronization for time-delay of linearly bidirectional coupled chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1197-1203.
    10. Chen, Heng-Hui, 2009. "Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 466-473.
    11. Li, Lixiang & Peng, Haipeng & Yang, Yixian & Wang, Xiangdong, 2009. "On the chaotic synchronization of Lorenz systems with time-varying lags," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 783-794.
    12. Peng, Bo & Liu, Bo & Zhang, Fu-Yi & Wang, Ling, 2009. "Differential evolution algorithm-based parameter estimation for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2110-2118.
    13. Ahmad, Israr, 2021. "A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    14. Wu, Xiaofeng & Cai, Jianping & Wang, Muhong, 2008. "Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 121-128.
    15. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Aguila-Camacho, Norelys & Duarte-Mermoud, Manuel A. & Delgado-Aguilera, Efredy, 2016. "Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 1-11.
    17. Li, Damei & Wang, Pei & Lu, Jun-an, 2009. "Some synchronization strategies for a four-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2553-2559.
    18. Molaei, M.R. & Umut, Ömür, 2008. "Generalized synchronization of nuclear spin generator system," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 227-232.
    19. Li, Guo-Hui & Xiong, Chu-An & Sun, Xiao-Nan, 2007. "Projective synchronization based on suitable separation," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 561-565.
    20. Cai, Na & Jing, Yuanwei & Zhang, Siying, 2009. "Generalized projective synchronization of different chaotic systems based on antisymmetric structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1190-1196.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2056-2062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.