IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i2p746-764.html
   My bibliography  Save this article

Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method

Author

Listed:
  • Beléndez, A.
  • Beléndez, T.
  • Neipp, C.
  • Hernández, A.
  • Álvarez, M.L.

Abstract

The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0⩽λ⩽1). For λ=1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ=1, while for λ<1 the relative error is much lower. For example, its value is as low as 0.062% for λ=0.5.

Suggested Citation

  • Beléndez, A. & Beléndez, T. & Neipp, C. & Hernández, A. & Álvarez, M.L., 2009. "Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 746-764.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:746-764
    DOI: 10.1016/j.chaos.2007.01.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907001798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cveticanin, L., 2006. "Homotopy–perturbation method for pure nonlinear differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1221-1230.
    2. Abbasbandy, S., 2007. "Application of He’s homotopy perturbation method to functional integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1243-1247.
    3. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. X. Mamatova & Z. K. Eshkuvatov & Sh. Ismail, 2023. "A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind," Mathematics, MDPI, vol. 11(20), pages 1-30, October.
    2. Jules Sadefo-Kamdem, 2011. "Integral Transforms With The Homotopy Perturbation Method And Some Applications," Working Papers hal-00580023, HAL.
    3. Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
    4. Biazar, J. & Ghazvini, H., 2009. "He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 770-777.
    5. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
    6. Golbabai, A. & Keramati, B., 2009. "Solution of non-linear Fredholm integral equations of the first kind using modified homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2316-2321.
    7. Biazar, J. & Ghazvini, H. & Eslami, M., 2009. "He’s homotopy perturbation method for systems of integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1253-1258.
    8. Golbabai, A. & Keramati, B., 2008. "Modified homotopy perturbation method for solving Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1528-1537.
    9. Cveticanin, L., 2009. "Application of homotopy-perturbation to non-linear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 221-228.
    10. Golbabai, A. & Keramati, B., 2008. "Easy computational approach to solution of system of linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 568-574.
    11. Wang, Shu-Qiang & He, Ji-Huan, 2008. "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 688-691.
    12. Tajvidi, T. & Razzaghi, M. & Dehghan, M., 2008. "Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 59-66.
    13. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
    14. Zeng, De-Qiang, 2009. "Nonlinear oscillator with discontinuity by the max–min approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2885-2889.
    15. Tao, Zhao-Ling, 2009. "Frequency–amplitude relationship of nonlinear oscillators by He’s parameter-expanding method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 642-645.
    16. Abdel-Halim Hassan, I.H., 2008. "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 53-65.
    17. Fathizadeh, M. & Rashidi, F., 2009. "Boundary layer convective heat transfer with pressure gradient using Homotopy Perturbation Method (HPM) over a flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2413-2419.
    18. Mosleh, Maryam & Otadi, Mahmood, 2015. "Least squares approximation method for the solution of Hammerstein–Volterra delay integral equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 105-110.
    19. Ramos, J.I., 2009. "An artificial parameter–Linstedt–Poincaré method for oscillators with smooth odd nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 380-393.
    20. Jafarimoghaddam, A. & Roşca, N.C. & Roşca, A.V. & Pop, I., 2021. "The universal Blasius problem: New results by Duan–Rach Adomian Decomposition Method with Jafarimoghaddam contraction mapping theorem and numerical solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 60-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:746-764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.