IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i4p1126-1133.html
   My bibliography  Save this article

The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations

Author

Listed:
  • Yusufoğlu, E.
  • Bekir, A.

Abstract

In this paper, we establish exact solutions for nonlinear evolution equations. The tanh and sine–cosine methods are used to construct exact periodic and soliton solutions of nonlinear evolution equations. Many new families of exact travelling wave solutions of the Vakhnenko and modified Benjamin–Bona–Mahony (MBBM) equations are successfully obtained. The obtained solutions include solitons, solitary and periodic solutions. These solutions may be important of significance for the explanation of some practical physical problems.

Suggested Citation

  • Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:4:p:1126-1133
    DOI: 10.1016/j.chaos.2007.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907000768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    2. Wazwaz, Abdul-Majid, 2006. "Two reliable methods for solving variants of the KdV equation with compact and noncompact structures," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 454-462.
    3. El-Wakil, S.A. & Abdou, M.A., 2007. "New exact travelling wave solutions using modified extended tanh-function method," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 840-852.
    4. Wazwaz, Abdul-Majid & Helal, M.A., 2005. "Nonlinear variants of the BBM equation with compact and noncompact physical structures," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 767-776.
    5. El-Wakil, S.A. & Abdou, M.A., 2007. "Modified extended tanh-function method for solving nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1256-1264.
    6. Yusufoğlu, E. & Bekir, A. & Alp, M., 2008. "Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1193-1197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain, Akhtar & Kara, A.H. & Zaman, F.D., 2023. "An invariance analysis of the Vakhnenko–Parkes Equation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Akbar, Yasir & Afsar, Haleem & Abbas, Shahzad & Javed, Muhammad Waqas & Ullah, Najib, 2021. "Dromions for the coupled Maccari’s system in fluid mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Vakhnenko, V.O. & Parkes, E.J., 2012. "The singular solutions of a nonlinear evolution equation taking continuous part of the spectral data into account in inverse scattering method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 846-852.
    4. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavitha, L. & Prabhu, A. & Gopi, D., 2009. "New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2322-2329.
    2. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    3. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    4. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    5. Kuru, S., 2009. "Compactons and kink-like solutions of BBM-like equations by means of factorization," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 626-633.
    6. Estévez, P.G. & Kuru, Ş. & Negro, J. & Nieto, L.M., 2009. "Travelling wave solutions of the generalized Benjamin–Bona–Mahony equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2031-2040.
    7. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    8. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    9. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    10. Yusufoğlu, E. & Bekir, A. & Alp, M., 2008. "Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1193-1197.
    11. Chanidaporn Pleumpreedaporn & Elvin J. Moore & Sekson Sirisubtawee & Nattawut Khansai & Songkran Pleumpreedaporn, 2024. "Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives," Mathematics, MDPI, vol. 12(14), pages 1-15, July.
    12. A K M Kazi Sazzad Hossain & Md. Ali Akbar, 2017. "Closed form Solutions of New Fifth Order Nonlinear Equation and New Generalized Fifth Order Nonlinear Equation via the Enhanced (G’/G)-expansion Method," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 4(2), pages 19-25, December.
    13. Çulha Ünal, Sevil & Daşcıoğlu, Ayşegül & Varol Bayram, Dilek, 2020. "New exact solutions of space and time fractional modified Kawahara equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    14. Nadeem, Muhammad & Hayat, Tasawar, 2024. "Analyzing the bifurcation, chaos and soliton solutions to (3+1)-dimensional nonlinear hyperbolic Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    15. Attia Rani & Muhammad Shakeel & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Prem Junsawang, 2022. "Application of the Exp − φ ξ -Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    16. Devi, Munesh & Yadav, Shalini & Arora, Rajan, 2021. "Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    17. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    18. Hamood Ur Rehman & Ifrah Iqbal & Suhad Subhi Aiadi & Nabil Mlaiki & Muhammad Shoaib Saleem, 2022. "Soliton Solutions of Klein–Fock–Gordon Equation Using Sardar Subequation Method," Mathematics, MDPI, vol. 10(18), pages 1-10, September.
    19. Lv, Xiumei & Lai, Shaoyong & Wu, YongHong, 2009. "An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 82-90.
    20. Dubey, Shweta & Chakraverty, S., 2022. "Application of modified extended tanh method in solving fractional order coupled wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 509-520.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:4:p:1126-1133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.