IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009044.html
   My bibliography  Save this article

Soliton, lumps, stability analysis and modulation instability for an extended (2+1)-dimensional Boussinesq model in shallow water

Author

Listed:
  • Badshah, Fazal
  • Tariq, Kalim U.
  • Ilyas, Hamza
  • Tufail, R. Nadir

Abstract

In this work, we study the extended (2+1)-dimensional Boussinesq model, which describes the propagation of waves with small amplitudes in shallow water propagating at a constant speed through a uniformly deep water canal. The governing equation is frequently used in computer simulations for modeling water waves in harbors and shallow seas in ocean engineering. Firstly, we apply the Hirota bilinear technique to establish the bilinear structure of the governing equation. Then, we formulate lump wave solitons and impact of lump wave across single, double strip solitons as well as the impact of lump across periodic waves. Furthermore, some traveling and semi-analytical solitons are developed by applying the unified technique, the hyperbolic ansatz approach and the Adomian decomposition technique. To calculate the absolute error, we have set up a difference table among the exact and approximate results. Moreover, we deliberate the stability analysis and the modulation instability of the governing equation briefly. The physical nature of various solitons is demonstrated by plotting the 3D, contours as well as 2D portraits. The applied techniques have the potential to be very impactful computational tools for efficiently deriving solutions to nonlinear evolution equations, frequently occurring in engineering, sciences and numerous other scientific domains with practical significance.

Suggested Citation

  • Badshah, Fazal & Tariq, Kalim U. & Ilyas, Hamza & Tufail, R. Nadir, 2024. "Soliton, lumps, stability analysis and modulation instability for an extended (2+1)-dimensional Boussinesq model in shallow water," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009044
    DOI: 10.1016/j.chaos.2024.115352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    2. Lu, Rong-Wu & Xu, Xi-Xiang & Zhang, Ning, 2019. "Construction of solutions for an integrable differential-difference equation by Darboux–Bäcklund transformation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 389-397.
    3. El-Dib, Yusry O., 2021. "Homotopy perturbation method with rank upgrading technique for the superior nonlinear oscillation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 555-565.
    4. Shen, Yuan & Tian, Bo & Zhou, Tian-Yu & Cheng, Chong-Dong, 2023. "Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    6. Khaled A. Gepreel & E. M. E. Zayed, 2021. "Multiple wave solutions for nonlinear burgers equations using the multiple exp-function method," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(11), pages 1-16, November.
    7. Badshah, Fazal & Tariq, Kalim U. & Bekir, Ahmet & Tufail, R. Nadir & Ilyas, Hamza, 2024. "Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Hongxia Wu & Liangjuan Gao & Jingxin Liu & Yunbo Zeng, 2016. "Two Kinds of Darboux-Bäcklund Transformations for the -Deformed KdV Hierarchy with Self-Consistent Sources," Advances in Mathematical Physics, Hindawi, vol. 2016, pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadeem, Muhammad & Hayat, Tasawar, 2024. "Analyzing the bifurcation, chaos and soliton solutions to (3+1)-dimensional nonlinear hyperbolic Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Chanidaporn Pleumpreedaporn & Elvin J. Moore & Sekson Sirisubtawee & Nattawut Khansai & Songkran Pleumpreedaporn, 2024. "Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives," Mathematics, MDPI, vol. 12(14), pages 1-15, July.
    3. A K M Kazi Sazzad Hossain & Md. Ali Akbar, 2017. "Closed form Solutions of New Fifth Order Nonlinear Equation and New Generalized Fifth Order Nonlinear Equation via the Enhanced (G’/G)-expansion Method," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 4(2), pages 19-25, December.
    4. Hussain, Arif & Ayub, Sadia & Salahuddin, T. & Khan, Mair & Altanji, Mohamed, 2024. "Numerical study of binary mixture and thermophoretic analysis near a solar radiative heat transfer," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Hamood Ur Rehman & Ifrah Iqbal & Suhad Subhi Aiadi & Nabil Mlaiki & Muhammad Shoaib Saleem, 2022. "Soliton Solutions of Klein–Fock–Gordon Equation Using Sardar Subequation Method," Mathematics, MDPI, vol. 10(18), pages 1-10, September.
    6. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    7. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    8. Duan, Xiaoyang & Zhao, Peixin & Li, Zhuyue & Han, Xue, 2024. "Quantifying the reciprocal impacts of capital and logistics networks in the supply chains: A cyber–physical system approach," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    9. Badshah, Fazal & Tariq, Kalim U. & Bekir, Ahmet & Tufail, R. Nadir & Ilyas, Hamza, 2024. "Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Silambarasan, Rathinavel & Kılıçman, Adem, 2023. "Solitons of dispersive wave steered from Navier–Bernoulli and Love’s hypothesis in cylindrical elastic rod with compressible Murnaghan’s materials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 699-720.
    11. Musawa Yahya Almusawa & Hassan Almusawa, 2024. "Exploring the Diversity of Kink Solitons in (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation," Mathematics, MDPI, vol. 12(21), pages 1-17, October.
    12. Li, Conghui & Li, Chuanzhong & Wang, Gang & Liu, Wei, 2024. "On the line-soliton solutions of a coupled modified Kadomtsev–Petviashvili system in two-layer shallow water," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Wu, Xi-Hu & Gao, Yi-Tian & Yu, Xin, 2024. "On a Hirota equation in oceanic fluid mechanics: Double-pole breather-to-soliton transitions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    14. Noha M. Rasheed & Mohammed O. Al-Amr & Emad A. Az-Zo’bi & Mohammad A. Tashtoush & Lanre Akinyemi, 2021. "Stable Optical Solitons for the Higher-Order Non-Kerr NLSE via the Modified Simple Equation Method," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    15. Wang, S.-F., 2024. "Spatial optical soliton cluster solutions in strongly nonlocal nonlinear media," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    16. Li, Jie & Yang, Zhen-Jun & Zhang, Shu-Min, 2024. "Characteristics of certain higher-order Hermite-cos-Gauss breathing solitons induced by the initial wavefront bending in optical media with nonlocal nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    17. Lingxiao Li & Mingliang Wang & Jinliang Zhang, 2022. "Application of Generalized Logistic Function to Travelling Wave Solutions for a Class of Nonlinear Evolution Equations," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
    18. Zhang, Xi & Wang, Yu-Feng & Yang, Sheng-Xiong, 2024. "Hybrid structures of the rogue waves and breather-like waves for the higher-order coupled nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    19. Wu, Xi-Hu & Gao, Yi-Tian, 2024. "Certain (2+1)-dimensional multi-soliton asymptotics in the shallow water," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    20. Duan, Zhengyan & Tao, Xiuyu & Yang, Bo, 2024. "Patterns of rogue waves in the sharp-line Maxwell–Bloch system," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.